spectroscopic
简明释义
英[ˌspektrəˈskɒpɪk]美[ˌspektrəˈskɑːpɪk]
adj. 光谱学的;分光镜的
英英释义
Relating to or utilizing spectroscopy, a technique used to analyze the interaction between matter and electromagnetic radiation. | 与光谱学相关或利用光谱学的方法,光谱学是一种用于分析物质与电磁辐射之间相互作用的技术。 |
单词用法
[医]光谱分析;[化]分光镜分析法 |
同义词
光谱的 | 光谱分析用于识别化合物。 | ||
光学的 | optical instruments are essential in many scientific experiments. | 光学仪器在许多科学实验中是必不可少的。 | |
光度的 | 光度测量有助于评估光强度。 |
反义词
例句
1.The diffraction method is appreciably lower than that of the spectroscopic method.
衍射法的精确度显然低于光谱法的精确度。
2.The measuring condition for principle Angle in spectroscopic ellipsometry is analyzed.
对椭圆偏振光谱中的主角测量条件进行了分析。
3.Based on a point source model, new spectroscopic orbital elements are determined.
依据点源模型获得了一组新的分光轨道解。
4.The thesis prospects for further molecular spectroscopic research of ITO/BLM system.
论文对ITO/BLM膜系统在分子光谱学方面的研究进行了展望。
5.With a variety of spectroscopic tests, the researchers then measure the composition of the minerals within the impurities.
通过各种光谱测试,研究人员然后检测出杂质中矿物质的成分。
6.Pauli deduced the principle from spectroscopic data prior to the advent of quantum mechanics.
泡利是在量子力学出现以前,根据原子光谱的数据导出这个原理的。
7.Principles and applications of modern near infrared spectroscopic techniques.
现代近红外光谱分析技术的原理及应用。
8.A new type of infrared spectroscopic ellipsometer has been designed and constructed.
介绍一种新型红外椭圆偏振光谱实验系统。
9.A spectroscopic binary star, 245 light-years from Earth, one of the brightest stars in the sky and the brightest star in the constellation Virgo.
一种用分光镜观察的距地球245光年双星,是天空中最亮的恒星之一,也是处女座中最亮的星星。
10.In the laboratory, spectroscopic 光谱的 methods helped identify unknown substances in the samples.
在实验室中,光谱的方法帮助识别样本中的未知物质。
11.Using spectroscopic 光谱的 techniques, researchers can detect trace amounts of pollutants in the air.
研究人员可以使用光谱的技术检测空气中微量污染物。
12.The scientists used spectroscopic 光谱的 techniques to analyze the chemical composition of the distant star.
科学家们使用了
13.The spectroscopic 光谱的 analysis revealed the presence of water vapor on the exoplanet.
该光谱的分析揭示了系外行星上水蒸气的存在。
14.Astronomers rely on spectroscopic 光谱的 data to determine the age and temperature of stars.
天文学家依赖于光谱的数据来确定恒星的年龄和温度。
作文
In the realm of scientific exploration, few tools have proven as invaluable as spectroscopic techniques. The term spectroscopic refers to the study of the interaction between light and matter, which allows scientists to analyze the composition and properties of various substances. This method has become a cornerstone in fields such as chemistry, astronomy, and biology, providing insights that would otherwise remain hidden. Understanding the principles behind spectroscopic analysis can illuminate the intricate details of our universe.One of the most common applications of spectroscopic techniques is in the identification of chemical compounds. When light passes through a substance, certain wavelengths are absorbed, while others are transmitted or reflected. By measuring these wavelengths, scientists can create a unique spectrum for each compound, much like a fingerprint. This process is crucial in laboratories where chemists need to identify unknown substances or verify the purity of their samples.In astronomy, spectroscopic methods allow researchers to delve into the composition of distant stars and galaxies. By analyzing the light emitted or absorbed by celestial bodies, astronomers can determine their elemental makeup, temperature, density, and even motion. For instance, the famous Hubble Space Telescope employs spectroscopic techniques to gather data from across the universe, helping us to understand the life cycles of stars and the expansion of the universe itself.Furthermore, in the field of biology, spectroscopic techniques play a vital role in understanding molecular structures and interactions. Techniques such as infrared spectroscopy and nuclear magnetic resonance (NMR) provide detailed information about the arrangement of atoms within a molecule. This information is essential for drug development, as it helps researchers design more effective pharmaceuticals by understanding how they interact with biological systems.The importance of spectroscopic analysis extends beyond pure science; it also has practical applications in various industries. For example, in environmental monitoring, spectroscopic methods can detect pollutants in air and water, ensuring compliance with safety regulations. In food science, these techniques can be used to assess the quality and safety of products, detecting contaminants or verifying authenticity.Despite its many advantages, the field of spectroscopic analysis is not without challenges. The complexity of spectra can make interpretation difficult, requiring sophisticated algorithms and computational techniques to extract meaningful information. Additionally, some materials may exhibit overlapping spectral features, complicating the identification process. As technology advances, however, researchers continue to develop new methods and tools to enhance the accuracy and efficiency of spectroscopic analysis.In conclusion, the significance of spectroscopic techniques in scientific research and practical applications cannot be overstated. From identifying chemical compounds to exploring the cosmos and advancing medical discoveries, the ability to analyze the interaction between light and matter has transformed our understanding of the world. As we continue to refine these techniques and expand their applications, the potential for new discoveries remains limitless. The journey through the spectroscopic landscape is not just a scientific endeavor; it is a quest for knowledge that connects us to the fundamental nature of the universe.
在科学探索的领域中,很少有工具像光谱技术那样被证明是无价的。术语spectroscopic指的是光与物质相互作用的研究,这使科学家能够分析各种物质的成分和性质。这种方法已成为化学、天文学和生物学等领域的基石,提供了否则将保持隐藏的洞察力。理解spectroscopic分析背后的原理可以揭示我们宇宙的复杂细节。spectroscopic技术最常见的应用之一是在化学化合物的识别中。当光通过某种物质时,某些波长会被吸收,而其他波长则被传输或反射。通过测量这些波长,科学家可以为每种化合物创建一个独特的光谱,就像指纹一样。这个过程在实验室中至关重要,化学家需要识别未知物质或验证其样品的纯度。在天文学中,spectroscopic方法使研究人员能够深入了解遥远恒星和星系的成分。通过分析天体发射或吸收的光,天文学家可以确定它们的元素组成、温度、密度甚至运动。例如,著名的哈勃太空望远镜利用spectroscopic技术收集来自宇宙各地的数据,帮助我们理解恒星的生命周期和宇宙的扩张。此外,在生物学领域,spectroscopic技术在理解分子结构和相互作用方面发挥着重要作用。红外光谱法和核磁共振(NMR)等技术提供有关分子中原子排列的详细信息。这些信息对于药物开发至关重要,因为它帮助研究人员通过了解药物与生物系统的相互作用来设计更有效的药物。spectroscopic分析的重要性超越了纯科学;它在各个行业也具有实际应用。例如,在环境监测中,spectroscopic方法可以检测空气和水中的污染物,确保遵守安全法规。在食品科学中,这些技术可以用来评估产品的质量和安全性,检测污染物或验证真实性。尽管有许多优点,spectroscopic分析领域并非没有挑战。光谱的复杂性可能使解释变得困难,需要复杂的算法和计算技术来提取有意义的信息。此外,一些材料可能表现出重叠的光谱特征,复杂化了识别过程。然而,随着技术的进步,研究人员继续开发新方法和工具,以提高spectroscopic分析的准确性和效率。总之,spectroscopic技术在科学研究和实际应用中的重要性不容小觑。从识别化学化合物到探索宇宙,再到推进医学发现,分析光与物质之间的相互作用的能力改变了我们对世界的理解。随着我们继续完善这些技术并扩大其应用,新的发现潜力依然无限。穿越spectroscopic领域的旅程不仅仅是科学的努力;它是一场连接我们与宇宙基本性质的知识探索。