standard deviation

简明释义

标准偏差

英英释义

Standard deviation is a statistic that measures the dispersion or variability of a set of values, indicating how much the individual values deviate from the mean of the set.

标准差是一个统计量,用于衡量一组数值的离散程度或变异性,表示个体数值与该组平均值的偏离程度。

例句

1.The standard deviation 标准差 of the test scores indicates how much variation there is from the average score.

测试分数的标准差标准差 表示与平均分数的变化程度。

2.To calculate the standard deviation 标准差, you first need to find the mean of the data set.

要计算标准差标准差,首先需要找到数据集的均值。

3.In finance, the standard deviation 标准差 of investment returns helps assess risk.

在金融领域,投资回报的标准差标准差 有助于评估风险。

4.The standard deviation 标准差 can be used to understand the spread of a population in statistics.

在统计学中,标准差标准差 可用于了解人群的分布情况。

5.A low standard deviation 标准差 means that the data points tend to be close to the mean.

标准差标准差 意味着数据点倾向于接近均值。

作文

Understanding the concept of standard deviation is crucial in the field of statistics and data analysis. It provides a measure of how spread out the numbers in a data set are. In simpler terms, while the mean gives us an idea of the average, the standard deviation tells us how much the individual data points differ from that average. This is particularly important in various fields such as finance, psychology, and research, where making informed decisions based on data is essential.To illustrate the importance of standard deviation, let’s consider two different sets of test scores. In the first set, the scores are 90, 92, 91, 89, and 90. The mean score is 90.2, and the standard deviation is very low, indicating that most students scored close to the average. In contrast, the second set of scores is 70, 85, 95, 60, and 100. While the mean score is also 82, the standard deviation is much higher, showing that the scores are more widely spread out. This difference can lead to different interpretations of student performance.In finance, understanding standard deviation is vital for assessing investment risk. An investment with a high standard deviation indicates that its returns can vary significantly from the expected return, which suggests higher risk. Conversely, a low standard deviation implies that the investment's returns are more stable and predictable. Investors often use this information to make decisions about where to allocate their resources.Moreover, in psychological research, the standard deviation helps researchers understand the variability in responses among participants. For instance, if a psychologist conducts a study on anxiety levels before a public speaking event, the standard deviation of the anxiety scores can reveal whether most participants feel similarly anxious or if there is a wide range of experiences. This insight can influence how conclusions are drawn and what recommendations are made.Another practical application of standard deviation is in quality control processes in manufacturing. Companies often analyze the standard deviation of product measurements to ensure consistency. If the standard deviation is too high, it may indicate problems in the production process that need to be addressed to maintain quality standards.In conclusion, the standard deviation is a powerful statistical tool that provides valuable insights across various domains. By measuring the dispersion of data points, it allows analysts, researchers, and decision-makers to better understand variability and risk. Whether in education, finance, psychology, or manufacturing, grasping the significance of standard deviation can lead to more informed and effective decisions. As we continue to accumulate data in our increasingly quantitative world, mastering concepts like standard deviation will become even more essential for interpreting information accurately and making sound judgments.

理解标准差的概念在统计学和数据分析领域至关重要。它提供了一个度量,衡量数据集中数字的分散程度。简单来说,虽然均值给我们提供了平均值的概念,但标准差告诉我们各个数据点与这个平均值的差异程度。这在金融、心理学和研究等多个领域都特别重要,因为根据数据做出明智决策是必不可少的。为了说明标准差的重要性,让我们考虑两组不同的考试成绩。在第一组中,成绩为90、92、91、89和90。平均分是90.2,而标准差非常低,表明大多数学生的分数接近平均值。相反,第二组分数为70、85、95、60和100。虽然平均分也是82,但标准差却高得多,显示出分数的分布更广。这种差异可能导致对学生表现的不同解释。在金融领域,理解标准差对于评估投资风险至关重要。高标准差的投资表明其回报可能与预期回报有显著差异,这意味着风险更高。相反,低标准差则意味着投资的回报更加稳定和可预测。投资者通常利用这些信息来决定如何分配资源。此外,在心理研究中,标准差帮助研究人员了解参与者之间反应的变异性。例如,如果心理学家进行一项关于公众演讲前焦虑水平的研究,焦虑评分的标准差可以揭示大多数参与者是否感到同样焦虑,或者他们的体验范围是否很广。这一见解可能会影响结论的得出以及建议的制定。标准差的另一个实际应用是在制造业的质量控制过程中。公司通常分析产品测量的标准差以确保一致性。如果标准差过高,可能表明生产过程中存在需要解决的问题,以维持质量标准。总之,标准差是一种强大的统计工具,为各个领域提供了有价值的见解。通过测量数据点的分散程度,它使分析师、研究人员和决策者能够更好地理解变异性和风险。无论是在教育、金融、心理学还是制造业,掌握标准差的重要性都能导致更明智和有效的决策。随着我们在日益定量化的世界中不断积累数据,掌握像标准差这样的概念将变得更加重要,以便准确解读信息并做出合理判断。

相关单词

deviation

deviation详解:怎么读、什么意思、用法