multiples
简明释义
n. [数] 倍数;跨国公司;多倍制图仪;连票
英英释义
单词用法
[电脑]多路存取;多路访问 | |
多次回归 |
同义词
反义词
单一的 | She prefers to travel alone, enjoying the beauty of single destinations. | 她更喜欢独自旅行,享受单一目的地的美丽。 | |
个体的 | 每个个体都有自己独特的故事可以讲述。 |
例句
1.Find the sum of all the multiples of 3 or 5 below 1,000.
我们的题目是求出 1,000以下且为3或5的倍数的自然数的和。
2.But agree in advance what the comps are and what the multiples are.
但需要提前在对比度和倍数上达成一致。
3.Multiples can be deployed in combination for more complex missions than could be achieved by one CubeSat alone.
与单独使用一颗立方体卫星相比,多颗卫星可以组合部署用于更复杂的任务。
4.There are superstitions attached to numbers; even those ancient Greeks believed that all numbers and their multiples had some mystical significance.
迷信与数字有关;甚至那些古希腊人也相信所有的数字及其倍数都具有神秘的意义。
5.14, 21 and 28 are all multiples of 7.
14、21和28都是7的倍数。
6.Such rich multiples are unjustified in a recession.
这么多倍的市盈率在一场衰退中是不合理的。
7.The teacher asked the students to find the multiples of 3 up to 30.
老师让学生找出3的倍数,直到30。
8.To create a pattern, you can use multiples of a certain number.
要创建一个模式,你可以使用某个数字的倍数。
9.You can use multiples of 10 for easier calculations.
你可以使用10的倍数来简化计算。
10.The company offers discounts on multiples of five items purchased.
公司对购买五件商品的倍数提供折扣。
11.In mathematics, a number can have multiples that extend infinitely.
在数学中,一个数字可以有无限的倍数。
作文
In our daily lives, we often encounter the concept of multiples (倍数) without even realizing it. From simple calculations to complex theories in mathematics, the idea of multiples is fundamental. A multiple is essentially a product of a number and an integer. For example, if we take the number 5, its multiples (倍数) would include 5, 10, 15, 20, and so on. Understanding multiples (倍数) is crucial not only in mathematics but also in various fields such as science, engineering, and economics.In mathematics, the study of multiples (倍数) begins with the basic principles of arithmetic. Students learn about multiples (倍数) when they are introduced to multiplication. They quickly realize that every time they multiply a number by an integer, they are generating multiples (倍数) of that number. This foundational knowledge is essential for more advanced topics like algebra and calculus, where multiples (倍数) play a significant role in solving equations and understanding functions.Moreover, the concept of multiples (倍数) extends beyond pure mathematics. In real life, we often deal with situations that involve multiples (倍数). For instance, when planning a budget, we might need to consider expenses that come in multiples (倍数) of ten or twenty. If a family is budgeting for groceries, they may find that certain items are priced in multiples (倍数) of five, making it easier to calculate total costs.In the realm of science, multiples (倍数) become even more critical. Take, for example, the periodic table of elements. The atomic masses of elements are often expressed in multiples (倍数) of a unified atomic mass unit. When conducting experiments, scientists frequently measure quantities that are in multiples (倍数) of certain units, whether it be liters, grams, or meters. This understanding allows researchers to communicate their findings effectively and ensures accuracy in their calculations.Engineering is another field where multiples (倍数) are essential. Engineers must often work with dimensions and materials that require calculations involving multiples (倍数). For instance, when designing a bridge, engineers might use multiples (倍数) of a specific measurement to ensure that the structure can support the necessary weight. This application of multiples (倍数) is vital for safety and functionality.In economics, the concept of multiples (倍数) can be seen in various financial metrics. Investors often look at price-to-earnings ratios, which can be expressed in multiples (倍数) of earnings. Understanding these multiples (倍数) helps investors assess the value of a company and make informed decisions. Additionally, economic models often utilize multiples (倍数) to predict growth rates and market trends.In conclusion, the concept of multiples (倍数) is pervasive across different domains. Whether in mathematics, science, engineering, or economics, multiples (倍数) provide a framework for understanding relationships between numbers and quantities. Mastering this concept not only enhances mathematical skills but also equips individuals with the tools to navigate various real-world situations effectively. As we continue to learn and grow, recognizing the importance of multiples (倍数) will undoubtedly enrich our understanding of the world around us.
在我们的日常生活中,我们经常会遇到“倍数”的概念,却并未意识到。从简单的计算到复杂的数学理论,“倍数”的概念都是基础的。“倍数”本质上是一个数字和一个整数的乘积。例如,如果我们取数字5,它的“倍数”将包括5、10、15、20等等。理解“倍数”不仅在数学中至关重要,而且在科学、工程和经济等多个领域也同样重要。在数学中,“倍数”的研究始于基本的算术原理。学生们在学习乘法时接触到“倍数”。他们很快意识到,每当他们将一个数字乘以一个整数时,他们就生成了该数字的“倍数”。这种基础知识对于更高级的主题如代数和微积分是必不可少的,在这些领域中,“倍数”在解方程和理解函数方面发挥着重要作用。此外,“倍数”的概念超越了纯数学。在现实生活中,我们经常处理涉及“倍数”的情况。例如,在制定预算时,我们可能需要考虑以10或20的“倍数”出现的费用。如果一个家庭在预算杂货,他们可能发现某些商品的价格以5的“倍数”标出,这使得计算总成本变得更容易。在科学领域,“倍数”变得更加关键。以元素周期表为例,元素的原子质量通常以统一原子质量单位的“倍数”表示。在进行实验时,科学家经常测量以某些单位的“倍数”,无论是升、克还是米。这种理解使研究人员能够有效地交流他们的发现,并确保他们的计算准确。工程是另一个“倍数”至关重要的领域。工程师必须处理需要涉及“倍数”的尺寸和材料的计算。例如,在设计桥梁时,工程师可能使用特定测量的“倍数”来确保结构能够承受必要的重量。这种“倍数”的应用对于安全性和功能性至关重要。在经济学中,“倍数”的概念可以在各种金融指标中看到。投资者通常关注市盈率,这可以用盈利的“倍数”表示。理解这些“倍数”帮助投资者评估公司的价值并做出明智的决策。此外,经济模型通常利用“倍数”来预测增长率和市场趋势。总之,“倍数”的概念在不同领域广泛存在。无论是在数学、科学、工程还是经济学中,“倍数”提供了理解数字和数量之间关系的框架。掌握这一概念不仅增强了数学技能,还使个人具备有效应对各种现实情况的工具。随着我们不断学习和成长,认识到“倍数”的重要性无疑将丰富我们对周围世界的理解。