magnetostatic

简明释义

[mæɡˌniːtəʊˈstætɪk][mæɡˌnɪtoʊˈstætɪk]

adj. [电磁] 静磁的

英英释义

Relating to the magnetic field that does not change with time, typically associated with stationary or slowly varying magnetic fields.

与不随时间变化的磁场相关,通常与静止或缓慢变化的磁场有关。

单词用法

magnetostatic theory

静磁理论

magnetostatic model

静磁模型

magnetostatic interactions

静磁相互作用

magnetostatic approximation

静磁近似

in magnetostatic conditions

在静磁条件下

magnetostatic simulations

静磁模拟

solve magnetostatic problems

解决静磁问题

apply magnetostatic principles

应用静磁原理

同义词

static magnetic

静态磁场

The magnetostatic field is essential in understanding the behavior of magnetic materials.

磁静场对于理解磁性材料的行为至关重要。

magnetostatic field

磁静场

In a static magnetic environment, the forces acting on the objects are predictable and stable.

在静态磁环境中,作用于物体的力是可预测和稳定的。

反义词

electrodynamic

电动态的

Electrodynamic forces are responsible for the motion of charged particles.

电动态力是带电粒子运动的原因。

magnetodynamic

磁动态的

Magnetodynamic effects can be observed in high-frequency magnetic fields.

在高频磁场中可以观察到磁动态效应。

例句

1.If using the scalar potential instead of the vector potential to analyze the current-carrying regions in a 3d magnetostatic field, the computing time can be greatly reduced.

在三维有限元磁场中,如果对电流区域进行适当处理,采用标量磁位进行分析,与采用矢量磁位相比,可大大提高计算速度。

2.In this paper, an effective solution to calculating the electrostatic and magnetostatic field force-solution of virtual displacement-is given on the grounds of theory and examples.

文章从理论和实例出发,给出一种计算电场力和磁场力的有效方法——虚位移解法。

3.The influence of the magnetostatic interaction between vertical Bloch lines (VBLs) on the stability of hard domains in garnet bubble films subjected to a magnetostatic bias field is investigated.

研究石榴石磁泡膜在直流偏磁场作用下布洛赫线间的静磁作用对硬磁畴稳定性的影响。

4.The interactions can be classified as the longrange magnetostatic interaction between the grains and the exchange coupling interaction of the neighboring grains.

相互作用可分为晶粒之间的长程静磁相互作用和近邻晶粒之间的交换耦合相互作用。

5.A configuration of nonlinear magnetostatic equilibrium is plotted in FIG.

并绘出了一个非线性的平衡位形。

6.The dependence of propagation modes of microwave magnetostatic waves(MSWs) on the magnetization direction in magnetooptic film waveguides is analyzed comprehensively in the paper.

全面分析了磁光薄膜波导中磁化方向对微波静磁波传播模式的影响。

7.The intergrain interactions can be classified as the long-range magnetostatic interaction and the exchange-coupling interaction of neighboring grains.

晶粒相互作用可分为长程静磁相互作用和近邻晶粒的交换耦合相互作用。

8.In a magnetostatic 静磁学的 environment, the magnetic field does not change with time.

静磁学的环境中,磁场不会随时间变化。

9.A magnetostatic 静磁学的 field is characterized by a constant magnetic flux density.

一个静磁学的场的特征是恒定的磁通密度。

10.The magnetostatic 静磁学的 approximation simplifies the calculations for large magnetic structures.

对于大型磁性结构,静磁学的近似简化了计算。

11.The behavior of the magnetic field in this region can be described using magnetostatic 静磁学的 equations.

这个区域内磁场的行为可以用静磁学的方程来描述。

12.Engineers often use magnetostatic 静磁学的 models to analyze magnetic circuits.

工程师们常常使用静磁学的模型来分析磁路。

作文

Magnetism is one of the fundamental forces of nature, and it plays a crucial role in various physical phenomena. One area of study within magnetism is known as magnetostatic, which refers to the study of magnetic fields that are static or time-independent. In simpler terms, magnetostatic deals with situations where magnetic fields do not change over time, allowing for a more straightforward analysis of their properties and effects.Understanding magnetostatic principles is essential in many applications, including electrical engineering, physics, and even medical technologies. For example, when designing electrical devices such as transformers or inductors, engineers must consider the magnetostatic fields generated by the currents flowing through the wires. These static magnetic fields can influence how efficiently these devices operate, making it critical to understand their characteristics.In the realm of physics, magnetostatic principles help explain the behavior of magnetic materials. When a material becomes magnetized, it creates a magnetostatic field around itself. This field can interact with other magnetic fields and materials, leading to various phenomena such as attraction and repulsion. The study of magnetostatic fields also involves understanding concepts like magnetic permeability and susceptibility, which describe how materials respond to magnetic fields.One significant aspect of magnetostatic analysis is the use of mathematical models to represent magnetic fields. The fundamental equations governing magnetostatic fields are derived from Maxwell's equations, which form the foundation of electromagnetism. By applying these equations, scientists and engineers can predict how magnetic fields behave in different scenarios, enabling them to design systems that utilize these fields effectively.In practical applications, magnetostatic principles are employed in various technologies. For instance, magnetic resonance imaging (MRI) relies on magnetostatic fields to produce detailed images of the inside of the human body. The MRI machine generates a strong static magnetic field, which aligns the protons in the body. When these protons are disturbed by radio waves, they emit signals that are used to create images. Without a solid understanding of magnetostatic principles, such advanced medical imaging techniques would not be possible.Moreover, magnetostatic fields are also crucial in data storage technologies. Hard drives and magnetic tape systems use magnetostatic principles to read and write data. The ability to manipulate these static magnetic fields allows for efficient data retrieval and storage, highlighting the importance of magnetostatic studies in modern computing.In conclusion, the study of magnetostatic fields is a vital area of research that impacts various fields, from engineering to medicine. By understanding how static magnetic fields behave and interact with materials, we can harness their power for practical applications. As technology continues to advance, the significance of magnetostatic principles will only grow, paving the way for new innovations and discoveries in the world of magnetism. Therefore, grasping the concept of magnetostatic is not just an academic exercise; it is essential for anyone looking to work in fields related to physics, engineering, or technology.

磁力是自然界的基本力量之一,并在各种物理现象中起着至关重要的作用。磁学研究的一个领域被称为magnetostatic,它指的是研究静态或时间不变的磁场。简单来说,magnetostatic处理的是磁场在时间上不发生变化的情况,从而使其特性和影响的分析更加简单。理解magnetostatic原理在许多应用中至关重要,包括电气工程、物理学甚至医疗技术。例如,在设计变压器或电感器等电气设备时,工程师必须考虑到电流通过导线时产生的magnetostatic场。这些静态磁场可以影响这些设备的工作效率,因此了解它们的特性是至关重要的。在物理学领域,magnetostatic原理有助于解释磁性材料的行为。当材料被磁化时,它会在周围产生一个magnetostatic场。这个场可以与其他磁场和材料相互作用,导致吸引和排斥等各种现象。magnetostatic场的研究还涉及理解诸如磁导率和磁化率等概念,这些概念描述了材料对磁场的响应。magnetostatic分析的一个重要方面是使用数学模型来表示磁场。支配magnetostatic场的基本方程是由麦克斯韦方程组推导而来的,这些方程构成了电磁学的基础。通过应用这些方程,科学家和工程师可以预测磁场在不同情境下的行为,从而设计出有效利用这些场的系统。在实际应用中,magnetostatic原理被广泛应用于各种技术中。例如,磁共振成像(MRI)依赖于magnetostatic场来生成人体内部的详细图像。MRI机器产生强大的静态磁场,使体内的质子排列。当这些质子受到无线电波的干扰时,它们会发出信号,这些信号用于创建图像。如果没有对magnetostatic原理的深入理解,这种先进的医学成像技术将无法实现。此外,magnetostatic场在数据存储技术中也至关重要。硬盘和磁带系统利用magnetostatic原理来读取和写入数据。操控这些静态磁场的能力使得数据检索和存储变得高效,突显了magnetostatic研究在现代计算机中的重要性。总之,magnetostatic场的研究是一个重要的研究领域,对工程、医学等各个领域都有影响。通过理解静态磁场的行为及其与材料的相互作用,我们可以利用它们的力量进行实际应用。随着技术的不断进步,magnetostatic原理的重要性只会增加,为磁学领域的新创新和发现铺平道路。因此,掌握magnetostatic的概念不仅仅是学术练习;对于希望在物理、工程或技术相关领域工作的人来说,它是必不可少的。