chemoautotroph
简明释义
英[ˌkiːməʊˈɔːtəˌtrəʊf]美[kɪmoʊˈɑːtətroʊf]
n. 化能自养生物;化能自养菌;化学自营菌
英英释义
单词用法
化能自养细菌 | |
化能自养代谢 | |
化能自养生物及其在生态系统中的作用 | |
化能自养生物的研究 |
同义词
反义词
例句
1.The energy exchange between natural semiconductor minerals and chemoautotroph microbes was investigated in details in this paper.
针对自然界中天然半导体矿物和化能自养微生物之间的能量交换途径进行了详细的实验研究。
2.The energy exchange between natural semiconductor minerals and chemoautotroph microbes was investigated in details in this paper.
针对自然界中天然半导体矿物和化能自养微生物之间的能量交换途径进行了详细的实验研究。
3.Certain bacteria are classified as chemoautotrophs (化能自养生物) because they can oxidize inorganic substances for energy.
某些细菌被归类为chemoautotrophs(化能自养生物),因为它们可以氧化无机物质以获取能量。
4.The deep-sea vents are home to many organisms, including chemoautotrophs (化能自养生物) that derive energy from the chemicals in the water.
深海热泉是许多生物的家园,包括从水中的化学物质中获取能量的chemoautotrophs(化能自养生物)。
5.The metabolic pathways of chemoautotrophs (化能自养生物) are fascinating and differ significantly from those of plants.
chemoautotrophs(化能自养生物)的代谢途径非常迷人,与植物的代谢途径有显著不同。
6.In extreme environments, chemoautotrophs (化能自养生物) play a crucial role in the ecosystem by recycling nutrients.
在极端环境中,chemoautotrophs(化能自养生物)通过循环营养物质在生态系统中发挥着重要作用。
7.Scientists study chemoautotrophs (化能自养生物) to understand how life can exist without sunlight.
科学家研究chemoautotrophs(化能自养生物),以了解生命如何在没有阳光的情况下存在。
作文
In the vast and diverse world of biology, organisms can be classified based on how they obtain energy and nutrients. One fascinating group of organisms is known as chemoautotrophs. These remarkable life forms have adapted to thrive in environments where sunlight is scarce or entirely absent. Unlike plants, which rely on photosynthesis to convert light energy into chemical energy, chemoautotrophs utilize chemical reactions to produce their own food. This unique ability allows them to inhabit extreme environments, such as deep-sea hydrothermal vents, hot springs, and even the icy surfaces of Antarctica.Chemoautotrophs are often found in ecosystems that are not dependent on sunlight. They derive their energy from inorganic compounds, such as hydrogen sulfide, ammonia, or iron, and use this energy to fix carbon dioxide into organic molecules. This process is known as chemosynthesis. For example, certain bacteria found near hydrothermal vents can oxidize hydrogen sulfide to generate energy, which is then used to convert carbon dioxide into glucose. This process not only sustains the chemoautotrophs themselves but also supports entire communities of organisms that rely on them for food.The ecological significance of chemoautotrophs cannot be overstated. They play a crucial role in nutrient cycling and energy flow in ecosystems that are independent of sunlight. In fact, many deep-sea communities are built around chemoautotrophic bacteria, which serve as the primary producers in these dark environments. These bacteria form symbiotic relationships with various marine animals, such as tube worms and clams, providing them with essential nutrients in exchange for shelter and access to chemical-rich waters.Moreover, chemoautotrophs have significant implications for our understanding of life on Earth and the potential for life beyond our planet. The existence of these organisms in extreme environments suggests that life may be able to thrive in conditions previously thought to be inhospitable. This has led scientists to consider the possibility of chemoautotrophic life forms existing on other celestial bodies, such as Europa, one of Jupiter's moons, which is believed to have a subsurface ocean rich in chemical nutrients.In conclusion, chemoautotrophs are a vital component of our planet's biodiversity and play an essential role in sustaining life in some of the most extreme environments on Earth. Their ability to harness energy from inorganic compounds rather than sunlight showcases the incredible adaptability of life. As we continue to explore the depths of our oceans and the possibilities of life beyond Earth, understanding chemoautotrophs will be crucial in unraveling the mysteries of life itself. The study of these organisms not only enhances our knowledge of ecological systems but also broadens our perspective on the potential for life in the universe.
在生物学的广阔而多样的世界中,生物可以根据它们获取能量和养分的方式进行分类。一类引人入胜的生物被称为化能自养生物。这些非凡的生命形式已经适应了在阳光稀缺或完全缺失的环境中生存。与依赖光合作用将光能转化为化学能的植物不同,化能自养生物利用化学反应来生产自己的食物。这种独特的能力使它们能够栖息在极端环境中,如深海热液喷口、温泉甚至南极的冰冷表面。化能自养生物通常出现在不依赖阳光的生态系统中。它们从无机化合物中获取能量,如硫化氢、氨或铁,并利用这种能量将二氧化碳固定成有机分子。这一过程被称为化学合成。例如,某些存在于热液喷口附近的细菌能够氧化硫化氢以产生能量,然后将二氧化碳转化为葡萄糖。这一过程不仅维持了化能自养生物自身的生存,还支持了整个依赖于它们的生物群落。化能自养生物的生态重要性不容小觑。它们在独立于阳光的生态系统中对营养循环和能量流动起着至关重要的作用。事实上,许多深海群落是围绕化能自养细菌构建的,这些细菌在黑暗环境中充当初级生产者。这些细菌与各种海洋动物(如管虫和蛤蜊)形成共生关系,为它们提供必需的营养,同时换取庇护和接触富含化学物质的水域。此外,化能自养生物对我们理解地球上的生命以及其他星球上生命的潜力具有重要意义。这些生物在极端环境中的存在表明,生命可能能够在之前被认为是不适宜的条件下繁衍生息。这促使科学家考虑在其他天体上存在化能自养生物的可能性,例如木星的卫星欧罗巴,科学家们认为那里可能有富含化学营养的地下海洋。总之,化能自养生物是我们星球生物多样性的关键组成部分,在维持地球上一些最极端环境中的生命方面发挥着重要作用。它们从无机化合物而非阳光中获取能量的能力展示了生命的惊人适应性。随着我们继续探索海洋深处和地球之外生命的可能性,理解化能自养生物将对揭开生命本身的奥秘至关重要。这些生物的研究不仅增强了我们对生态系统的理解,也拓宽了我们对宇宙中生命潜力的视野。