standard refraction

简明释义

标准折射

英英释义

Standard refraction refers to the measurement of the bending of light as it passes through different media, typically using a standard set of conditions or parameters for consistency in optical measurements.

标准折射是指在不同介质中光线传播时的弯曲测量,通常使用一套标准条件或参数,以确保光学测量的一致性。

例句

1.In astronomy, standard refraction 标准折射 helps in adjusting the observed positions of celestial bodies.

在天文学中,标准折射 标准折射 有助于调整观察到的天体位置。

2.The optometrist explained that the measurement of standard refraction 标准折射 is crucial for determining the correct prescription for glasses.

验光师解释说,测量标准折射 标准折射 对于确定眼镜的正确处方至关重要。

3.During the eye exam, the doctor conducted a standard refraction 标准折射 test to assess my vision.

在眼科检查中,医生进行了标准折射 标准折射 测试以评估我的视力。

4.Understanding standard refraction 标准折射 is essential for anyone studying optics.

理解标准折射 标准折射 对于任何学习光学的人来说都是必不可少的。

5.The standard refraction 标准折射 values are used to calibrate the instruments in the laboratory.

实验室中使用的仪器校准需要使用标准折射 标准折射 值。

作文

In the field of optics, understanding the concept of standard refraction is essential for both theoretical and practical applications. Refraction refers to the bending of light as it passes from one medium to another, which is governed by Snell's law. The standard refraction is defined under specific conditions, typically at a temperature of 20 degrees Celsius and a pressure of 1013.25 hPa. This standardization allows scientists and engineers to predict how light will behave in various situations, ensuring consistency across experiments and applications. The importance of standard refraction can be seen in various fields, including astronomy, photography, and telecommunications. For instance, astronomers rely on accurate measurements of light refraction when observing celestial bodies through Earth’s atmosphere. Variations in atmospheric conditions can alter the path of light, leading to potential errors in data if not accounted for. By using standard refraction values, astronomers can correct their observations, providing more accurate information about distant stars and planets.In photography, the principles of standard refraction are crucial when designing lenses. Lenses are crafted to manipulate light in specific ways, enabling photographers to achieve desired effects. Understanding how light refracts through different materials allows manufacturers to create lenses that minimize distortion and enhance image quality. Without adhering to standard refraction principles, the quality of photographs could diminish significantly, impacting both amateur and professional photography.Telecommunications also heavily depends on the principles of standard refraction. Fiber optic cables, which transmit data at high speeds, rely on the refraction of light to guide signals over long distances. The design of these cables takes into account the refractive indices of the materials used, ensuring that light travels efficiently with minimal loss. Engineers must consider standard refraction when developing new technologies to improve data transmission rates and overall performance in communication networks.Moreover, the concept of standard refraction is not limited to just light; it also applies to sound waves and other forms of energy. For example, in underwater acoustics, the refraction of sound waves can affect sonar readings and marine communication. By utilizing standard refraction principles, researchers can better understand how sound travels through different water layers, leading to more accurate results in oceanographic studies.In conclusion, the concept of standard refraction plays a pivotal role in various scientific and engineering disciplines. Its application allows for greater accuracy and reliability in measurements and designs, influencing everything from astronomical observations to everyday technology like cameras and communication devices. As our understanding of light and its behavior continues to evolve, the significance of standard refraction will undoubtedly grow, paving the way for advancements in science and technology that rely on precise control of light and other energy forms.

在光学领域,理解标准折射的概念对理论和实际应用至关重要。折射是指光线在从一种介质传播到另一种介质时的弯曲,这遵循斯涅尔定律。标准折射是在特定条件下定义的,通常是在20摄氏度的温度和1013.25 hPa的压力下。这种标准化使科学家和工程师能够预测光在各种情况下的行为,从而确保实验和应用的一致性。标准折射的重要性可以在多个领域中看到,包括天文学、摄影和电信。例如,天文学家依赖于光折射的准确测量来观察通过地球大气层的天体。大气条件的变化会改变光的路径,如果不加以考虑,可能会导致数据错误。通过使用标准折射值,天文学家可以修正他们的观察结果,提供关于遥远恒星和行星的更准确的信息。在摄影中,标准折射的原理在设计镜头时至关重要。镜头被设计用于以特定方式操控光,使摄影师能够实现所需的效果。理解光如何通过不同材料折射使制造商能够创造出减少失真和增强图像质量的镜头。如果不遵循标准折射原理,照片的质量可能会显著下降,影响业余和专业摄影。电信也严重依赖于标准折射的原理。光纤电缆以高速传输数据,依靠光的折射来引导信号穿越长距离。这些电缆的设计考虑了所用材料的折射率,以确保光以高效的方式传播,损失最小。工程师在开发新技术以提高数据传输速率和通信网络的整体性能时,必须考虑到标准折射。此外,标准折射的概念不仅限于光;它还适用于声波和其他形式的能量。例如,在水下声学中,声波的折射会影响声纳读数和海洋通信。通过利用标准折射原理,研究人员可以更好地理解声音如何在不同水层中传播,从而在海洋学研究中获得更准确的结果。总之,标准折射的概念在各个科学和工程学科中发挥着关键作用。其应用使测量和设计的准确性和可靠性得以提高,影响从天文观测到日常技术(如相机和通信设备)的方方面面。随着我们对光及其行为的理解不断发展,标准折射的重要性无疑将会增长,为依赖于精确控制光和其他能量形式的科学和技术进步铺平道路。

相关单词

refraction

refraction详解:怎么读、什么意思、用法