microscopy

简明释义

[maɪˈkrɒskəpi][maɪˈkrɑːskəpi]

n. 显微镜检查;显微镜使用;显微镜学

英英释义

The science or practice of using a microscope to view small objects or organisms that cannot be seen with the naked eye.

使用显微镜观察肉眼无法看见的小物体或生物的科学或实践。

单词用法

electron microscopy

电子显微镜学,电子显微镜

scanning electron microscopy

扫描电子显微镜检查法

同义词

microanalysis

微观分析

Microanalysis is essential for understanding the composition of materials at a microscopic level.

微观分析对于理解材料在微观层面的组成至关重要。

micrography

显微摄影

Micrography allows researchers to capture detailed images of specimens under a microscope.

显微摄影使研究人员能够在显微镜下捕捉样本的详细图像。

optical microscopy

光学显微镜

Optical microscopy is commonly used in biology to observe living cells.

光学显微镜常用于生物学中观察活细胞。

electron microscopy

电子显微镜

Electron microscopy provides much higher resolution than optical microscopy.

电子显微镜提供的分辨率远高于光学显微镜。

反义词

macroscopy

宏观观察

Macroscopy allows scientists to observe large-scale structures without the need for magnification.

宏观观察使科学家能够在不需要放大的情况下观察大规模结构。

naked eye observation

肉眼观察

Naked eye observation is often used for preliminary assessments before detailed analysis.

肉眼观察通常用于详细分析之前的初步评估。

例句

1.Cloth was Leeuwenhoek's business but microscopy his passion.

卖布是列文虎克的业务,而显微镜是他的爱好。

2.Many countries still rely principally on sputum smear microscopy, a diagnostic method that was developed over a century ago.

许多国家仍主要依靠痰涂片镜检这种在一个多世纪之前开发出来的诊断方法。

3.Their method is called tomographic phase microscopy, and it is reported in this week's Nature Methods.

这种方法被称为X射线断层扫描相位显微镜法(tomographic phase microscopy),并发表于本周的《自然·方法学》(Nature Methods)上。

4.Developmental biology has also made huge leaps since 2000 thanks to new microscopy techniques.

由于新的显微技术,2000年以来发育生物学也取得了巨大的进步。

5.The technology is dubbed STEAM, short for serial time-encoded amplified microscopy.

这项技术被称为STEAM,即连续时间编码放大照相机。 它用一束红外激光照射物体,变换一系列不同的波长,每一个对应着传感器上的一个像素点。

6.Light microscopy is an essential healthcare tool that can help to diagnose dangerous diseases including malaria and tuberculosis.

光学显微镜是基本的保健仪器,能诊断出像疟疾、肺结核等病症。

7.In materials science, microscopy 显微镜技术 helps analyze the structure of metals and polymers.

在材料科学中,显微镜技术有助于分析金属和聚合物的结构。

8.The use of microscopy 显微镜技术 has revolutionized the field of biology.

显微镜技术的使用彻底改变了生物学领域。

9.Research in nanotechnology often relies on microscopy 显微镜技术 to visualize nanoscale materials.

纳米技术的研究通常依赖显微镜技术来可视化纳米级材料。

10.Using microscopy 显微镜技术, scientists can observe cellular processes in real-time.

通过显微镜技术,科学家可以实时观察细胞过程。

11.The clinic employs microscopy 显微镜技术 to diagnose various diseases from tissue samples.

该诊所利用显微镜技术从组织样本中诊断各种疾病。

作文

Microscopy is a fascinating field that allows scientists to explore the intricate details of the microscopic world. The term microscopy refers to the use of microscopes to magnify small objects, making them visible for analysis and study. This technique has revolutionized many scientific disciplines, including biology, materials science, and medicine. By employing various types of microscopes, researchers can observe cells, bacteria, and even viruses, which are otherwise invisible to the naked eye. The advancements in microscopy technology have significantly enhanced our understanding of life at a cellular level and have paved the way for numerous breakthroughs in health and science.One of the most common forms of microscopy is light microscopy, which utilizes visible light to illuminate specimens. This method is particularly useful for studying live cells and tissues, as it allows for real-time observation of biological processes. However, light microscopy has its limitations, especially when it comes to resolving structures smaller than the wavelength of light. To overcome this challenge, scientists have developed electron microscopy, which uses beams of electrons instead of light to achieve much higher resolutions. This technique enables the visualization of ultra-structural details, such as organelles within cells or the arrangement of atoms in materials.The application of microscopy extends beyond the realm of biology. In materials science, for example, scanning electron microscopy (SEM) is employed to analyze the surface morphology of materials. This technique provides valuable information about the texture, composition, and structural integrity of materials, which is essential for developing new technologies and improving existing ones. Similarly, in the field of nanotechnology, atomic force microscopy (AFM) allows scientists to manipulate and measure materials at the nanoscale, leading to innovations in electronics, medicine, and energy.Moreover, microscopy plays a crucial role in medical diagnostics. Pathologists use histopathology, a branch of microscopy, to examine tissue samples for signs of disease, such as cancer. By analyzing the cellular architecture and identifying abnormal cell growth, pathologists can provide critical information that guides treatment decisions. Additionally, advances in fluorescence microscopy have enabled researchers to tag specific proteins or molecules within cells, allowing for detailed studies of cellular functions and interactions.Despite its many advantages, microscopy also poses challenges. The preparation of samples for microscopic examination often requires intricate techniques that can alter the natural state of the specimen. Furthermore, interpreting the images produced by various microscopy techniques necessitates a high level of expertise and experience. Scientists must be well-versed in the principles of microscopy and the specific characteristics of the instruments they use to obtain accurate results.In conclusion, microscopy is an indispensable tool in modern science that continues to evolve and expand our understanding of the world around us. From revealing the complexities of cellular structures to advancing material sciences and medical diagnostics, the impact of microscopy is profound. As technology progresses, we can expect even more sophisticated techniques to emerge, further enhancing our ability to explore and comprehend the microscopic universe. The future of microscopy holds exciting possibilities that will undoubtedly lead to new discoveries and innovations across various scientific fields.

显微镜学是一个迷人的领域,它使科学家能够探索微观世界的复杂细节。术语显微镜学指的是使用显微镜放大小物体,使其可见以便进行分析和研究。这一技术彻底改变了许多科学学科,包括生物学、材料科学和医学。通过采用各种类型的显微镜,研究人员可以观察细胞、细菌甚至病毒,这些都是肉眼无法看到的。显微镜学技术的进步显著增强了我们对细胞水平生命的理解,并为健康和科学的众多突破铺平了道路。最常见的显微镜学形式之一是光学显微镜,它利用可见光照亮标本。这种方法特别适合研究活细胞和组织,因为它允许实时观察生物过程。然而,光学显微镜有其局限性,尤其是在解析小于光波长的结构时。为了克服这一挑战,科学家们开发了电子显微镜,使用电子束而不是光,以实现更高的分辨率。这一技术使得可视化超结构细节成为可能,例如细胞内的细胞器或材料中原子的排列。显微镜学的应用不仅限于生物学领域。在材料科学中,例如,扫描电子显微镜(SEM)用于分析材料的表面形态。这一技术提供了关于材料的纹理、成分和结构完整性的重要信息,这对于开发新技术和改进现有技术至关重要。同样,在纳米技术领域,原子力显微镜(AFM)使科学家能够在纳米尺度上操纵和测量材料,从而推动电子、医学和能源等领域的创新。此外,显微镜学在医学诊断中也起着至关重要的作用。病理学家使用组织病理学,这是显微镜学的一个分支,检查组织样本以寻找疾病的迹象,如癌症。通过分析细胞结构并识别异常细胞生长,病理学家可以提供关键的信息,指导治疗决策。此外,荧光显微镜的进步使研究人员能够标记细胞内特定的蛋白质或分子,从而进行细胞功能和相互作用的详细研究。尽管有许多优点,显微镜学也面临挑战。样本准备过程中常常需要复杂的技术,这可能会改变标本的自然状态。此外,解释各种显微镜技术所产生的图像需要高度的专业知识和经验。科学家必须精通显微镜学的原理以及所使用仪器的具体特性,以获得准确的结果。总之,显微镜学是现代科学中不可或缺的工具,它不断发展并扩展我们对周围世界的理解。从揭示细胞结构的复杂性到推动材料科学和医学诊断,显微镜学的影响深远。随着技术的进步,我们可以期待出现更复杂的技术,进一步增强我们探索和理解微观宇宙的能力。显微镜学的未来充满了令人兴奋的可能性,无疑将导致各个科学领域的新发现和创新。