arctan

简明释义

[ɑːkˈtæn][ɑrˈktæn]

n. 反正切

英英释义

The arctan function, also known as the inverse tangent function, is a mathematical function that returns the angle whose tangent is a given number.

反正切函数,也称为反正切,是一个数学函数,它返回一个角度,该角度的正切值为给定的数字。

单词用法

arctan of a number

一个数的反正切

calculate arctan

计算反正切

inverse tangent (arctan)

反正切(arctan

arctan function

反正切函数

同义词

inverse tangent

反正切

The arctan of a number gives the angle whose tangent is that number.

一个数的反正切给出的是其正切值为该数的角度。

atan

反正切函数

In trigonometry, atan(x) is often used to calculate angles.

在三角学中,atan(x)常用于计算角度。

反义词

tan

正切

The tangent of an angle in a right triangle is the ratio of the opposite side to the adjacent side.

在直角三角形中,一个角的正切是对边与邻边的比率。

例句

1.Based on noncoherent DLL and arctan carrier PLL, the curves of tracking errors in general forms are given after a series of computing and simulation.

基于非相关早减迟延时锁定环和反正切载波跟踪环,得出了由一般形式的误差解析表达式导出的码相和载波相位跟踪误差曲线。

2.Based on noncoherent DLL and arctan carrier PLL, the curves of tracking errors in general forms are given after a series of computing and simulation.

基于非相关早减迟延时锁定环和反正切载波跟踪环,得出了由一般形式的误差解析表达式导出的码相和载波相位跟踪误差曲线。

3.The arctan (反正切) function is essential for converting rectangular coordinates to polar coordinates.

对于将直角坐标转换为极坐标,arctan (反正切) 函数是必不可少的。

4.In trigonometry, the arctan (反正切) of a slope helps us determine the angle of an incline.

在三角学中,斜率的arctan (反正切) 帮助我们确定坡度的角度。

5.To find the angle of elevation, we can use the formula involving the arctan (反正切) function.

为了找到仰角,我们可以使用涉及arctan (反正切) 函数的公式。

6.In physics, the arctan (反正切) function can be used to analyze projectile motion.

在物理学中,arctan (反正切) 函数可用于分析抛体运动。

7.You can calculate the angle using arctan (反正切) when you know the opposite and adjacent sides of a right triangle.

当你知道直角三角形的对边和邻边时,可以使用arctan (反正切) 计算角度。

作文

In mathematics, especially in the field of trigonometry, the concept of inverse functions plays a crucial role. One such function is the arctan, which is the inverse of the tangent function. The arctan function, also known as the inverse tangent, allows us to find an angle when we know the value of the tangent. For example, if we have a right triangle and we know the lengths of the opposite side and the adjacent side, we can calculate the angle using the arctan function. This is particularly useful in various applications, such as engineering, physics, and computer graphics.The arctan function is defined for all real numbers. Its values range from -π/2 to π/2 radians, or from -90 degrees to 90 degrees. This means that when you input a number into the arctan function, it will return an angle that corresponds to that tangent value. For instance, if we take the arctan of 1, we get π/4 radians or 45 degrees, because the tangent of 45 degrees is 1. This property makes the arctan function extremely valuable in solving trigonometric equations.Moreover, the arctan function is often used in calculus, particularly in integration. The integral of 1/(1+x²) is equal to arctan(x) + C, where C is the constant of integration. This relationship highlights the importance of the arctan function in higher-level mathematics, as it appears frequently in various integrals and derivatives.In practical applications, the arctan function is utilized in navigation and robotics. For example, when a robot needs to determine its orientation based on sensor data, it can use the arctan function to calculate the angle relative to a reference point. Similarly, in computer graphics, the arctan function can be used to convert Cartesian coordinates to polar coordinates, enabling more complex visual representations.It is also worth noting that the arctan function has a specific notation. It is commonly represented as tan⁻¹(x) or arctan(x), where x is the value whose angle we want to find. This notation is important because it distinguishes the arctan function from the tangent function itself, which is denoted simply as tan(x). In conclusion, the arctan function is a fundamental concept in trigonometry and mathematics. Its ability to provide angles from tangent values makes it essential in various fields, including engineering, physics, and computer science. Understanding the properties and applications of the arctan function not only enhances our mathematical skills but also improves our problem-solving abilities in real-world scenarios. As we continue to explore the vast world of mathematics, the arctan function will undoubtedly remain a key tool in our mathematical toolkit.

在数学中,特别是在三角学领域,反函数的概念起着至关重要的作用。其中一个函数是arctan,它是正切函数的反函数。arctan函数,也称为反正切,允许我们在知道正切值时找到一个角度。例如,如果我们有一个直角三角形,并且知道对边和邻边的长度,我们可以使用arctan函数计算角度。这在工程、物理和计算机图形等各种应用中尤其有用。arctan函数对所有实数都有定义。其值范围从-π/2到π/2弧度,或从-90度到90度。这意味着,当你将一个数字输入arctan函数时,它将返回一个与该正切值对应的角度。例如,如果我们取arctan(1),我们得到π/4弧度或45度,因为45度的正切值为1。这个属性使得arctan函数在解决三角方程中极为宝贵。此外,arctan函数通常用于微积分,特别是在积分中。1/(1+x²)的积分等于arctan(x) + C,其中C是积分常数。这个关系突显了arctan函数在更高层次的数学中的重要性,因为它经常出现在各种积分和导数中。在实际应用中,arctan函数被用于导航和机器人技术。例如,当机器人需要根据传感器数据确定其方向时,可以使用arctan函数计算相对于参考点的角度。同样,在计算机图形学中,arctan函数可以用于将笛卡尔坐标转换为极坐标,从而实现更复杂的视觉表现。值得注意的是,arctan函数有特定的符号表示。它通常表示为tan⁻¹(x)或arctan(x),其中x是我们想要找到角度的值。这个符号表示很重要,因为它区分了arctan函数和正切函数本身,后者仅表示为tan(x)。总之,arctan函数是三角学和数学中的一个基本概念。它提供了从正切值推导角度的能力,使其在工程、物理和计算机科学等多个领域中至关重要。理解arctan函数的性质和应用不仅增强了我们的数学技能,还提高了我们在现实场景中解决问题的能力。在我们继续探索广阔的数学世界时,arctan函数无疑将继续作为我们数学工具箱中的关键工具。