dissimilatory
简明释义
英[dɪˈsɪmɪlətəri]美[dɪˈsɪmɪˌleɪtərɪ]
adj. 异化的
英英释义
单词用法
异化代谢 | |
异化过程 | |
异化途径 | |
异化硫酸盐还原 | |
异化硝酸盐还原 | |
异化铁还原 |
同义词
反义词
例句
1.Behavior of microbial dissimilatory reduction in the process of bioleaching metal oxide was researched to increase the leaching efficiency of Marine manganese nodules.
为考查异化还原微生物在浸出金属氧化物中的行为,提高微生物浸出深海多金属结核的效率。
2.Dissimilatory iron reduction showed important environmental significances.
异化铁还原过程具有重要的环境意义。
3.Dissimilatory nitrate reduction in fungi includes denitrification and ammonia fermentation, which occurs under the conditions of limited aeration.
真菌异化硝酸盐还原途径的发现打破了反硝化仅存在于原核细胞这一传统观念。
4.Behavior of microbial dissimilatory reduction in the process of bioleaching metal oxide was researched to increase the leaching efficiency of Marine manganese nodules.
为考查异化还原微生物在浸出金属氧化物中的行为,提高微生物浸出深海多金属结核的效率。
5.Now some research said the process of iron oxide anaerobic reduction is mainly a microbial dissimilatory iron reduction.
目前研究表明氧化铁厌氧还原主要是微生物介导的异化还原过程。
6.The dissimilatory 非同化的 metabolism of organic matter is crucial for ecosystem functioning.
有机物的dissimilatory 非同化的 代谢对生态系统功能至关重要。
7.In certain bacteria, dissimilatory 非同化的 sulfate reduction is a key metabolic pathway.
在某些细菌中,dissimilatory 非同化的 硫酸盐还原是一个关键的代谢途径。
8.The study examined how dissimilatory 非同化的 iron reduction affects soil health.
该研究考察了dissimilatory 非同化的 铁还原如何影响土壤健康。
9.The research focused on the role of dissimilatory 非同化的 processes in nitrogen cycling.
该研究集中于氮循环中dissimilatory 非同化的 过程的作用。
10.Understanding dissimilatory 非同化的 pathways can help improve wastewater treatment processes.
理解dissimilatory 非同化的 路径可以帮助改善废水处理过程。
作文
In the realm of biology, understanding metabolic processes is crucial for comprehending how organisms function and interact with their environment. One fascinating aspect of metabolism is the concept of *dissimilatory* 异化 pathways, which play a significant role in energy production and nutrient cycling. These pathways are essential for organisms that derive energy from the breakdown of complex organic compounds. Unlike assimilatory processes, where organisms incorporate carbon and nutrients into their cellular structures, *dissimilatory* 异化 processes involve the conversion of these compounds into simpler forms, releasing energy in the process.For example, in anaerobic environments, certain bacteria utilize *dissimilatory* 异化 sulfate reduction, where sulfate serves as an electron acceptor instead of oxygen. This process not only allows these bacteria to thrive in low-oxygen conditions but also contributes to the sulfur cycle, demonstrating the interconnectedness of various biogeochemical cycles. By breaking down organic matter, these bacteria release hydrogen sulfide, which can have both beneficial and harmful effects on the environment.Moreover, *dissimilatory* 异化 pathways are not limited to bacteria; they are also present in higher organisms. For instance, during cellular respiration, glucose undergoes a series of *dissimilatory* 异化 reactions to produce ATP, the energy currency of cells. This process involves glycolysis, the Krebs cycle, and the electron transport chain, where glucose is ultimately converted into carbon dioxide and water, releasing energy that powers cellular functions.The significance of *dissimilatory* 异化 processes extends beyond individual organisms. They play a vital role in ecosystems by influencing nutrient availability and energy flow. For instance, when decomposers break down dead organic material, they engage in *dissimilatory* 异化 processes that recycle nutrients back into the soil, promoting plant growth and sustaining food webs. Without these processes, ecosystems would become stagnant, lacking the necessary nutrients for life.In conclusion, *dissimilatory* 异化 processes are fundamental to both microbial and macroscopic life. They facilitate energy production, nutrient cycling, and environmental balance. Understanding these pathways enhances our knowledge of ecological dynamics and highlights the importance of microorganisms in maintaining the health of our planet. As we continue to explore the intricacies of biological systems, it becomes increasingly clear that the study of *dissimilatory* 异化 processes is essential for advancing fields such as environmental science, microbiology, and biotechnology. By appreciating the complexity and significance of these metabolic pathways, we can better understand the delicate balance that sustains life on Earth.
在生物学领域,理解代谢过程对于理解生物体如何运作以及与环境相互作用至关重要。代谢的一个迷人方面是*异化* 异化途径的概念,这在能量生产和营养循环中发挥着重要作用。这些途径对于从复杂有机化合物的分解中获取能量的生物体至关重要。与同化过程不同,同化过程中生物体将碳和营养物质纳入其细胞结构,而*异化* 异化过程则涉及将这些化合物转化为更简单的形式,在这个过程中释放能量。例如,在厌氧环境中,某些细菌利用*异化* 异化 硫酸盐还原,其中硫酸作为电子受体,而不是氧气。这个过程不仅使这些细菌能够在低氧条件下生存,而且还促进了硫循环,展示了各种生物地球化学循环之间的相互联系。通过分解有机物,这些细菌释放出硫化氢,这对环境既有益处也有害处。此外,*异化* 异化途径并不限于细菌;它们在更高的生物体中也存在。例如,在细胞呼吸过程中,葡萄糖经过一系列*异化* 异化反应生成ATP,即细胞的能量货币。这个过程涉及糖酵解、克雷布斯循环和电子传递链,其中葡萄糖最终转化为二氧化碳和水,释放出驱动细胞功能的能量。*异化* 异化过程的重要性超越了个体生物体。它们通过影响营养物质的可用性和能量流动在生态系统中发挥着重要作用。例如,当分解者分解死亡的有机物时,它们参与*异化* 异化过程,将营养物质循环回土壤,促进植物生长并维持食物网。如果没有这些过程,生态系统将变得停滞,缺乏生命所需的营养物质。总之,*异化* 异化过程是微生物和宏观生命的基础。它们促进能量生产、营养循环和环境平衡。理解这些途径增强了我们对生态动态的认识,并突出了微生物在维持我们星球健康中的重要性。随着我们继续探索生物系统的复杂性,越来越清楚的是,研究*异化* 异化过程对于推进环境科学、微生物学和生物技术等领域至关重要。通过欣赏这些代谢途径的复杂性和重要性,我们可以更好地理解维持地球生命的微妙平衡。