diastereomer

简明释义

[ˌdaɪəˈsteriəmə(r)][daɪəˈstɪərɪoʊmər]

n. 非对映异构体

英英释义

A diastereomer is one of a pair or group of stereoisomers that are not related as mirror images of each other and have different physical properties.

非对映体是指一对或一组立体异构体,它们不是彼此的镜像关系,并且具有不同的物理性质。

单词用法

diastereomeric relationship

二面体异构体关系

diastereomeric excess

二面体异构体过量

separate diastereomers

分离二面体异构体

identify diastereomers

识别二面体异构体

同义词

stereoisomer

立体异构体

Stereoisomers have the same molecular formula but differ in the spatial arrangement of atoms.

立体异构体具有相同的分子式,但在原子的空间排列上有所不同。

geometric isomer

几何异构体

Geometric isomers can exhibit different physical and chemical properties due to their distinct configurations.

几何异构体由于其不同的构型,可能表现出不同的物理和化学性质。

反义词

enantiomer

对映体

Enantiomers are mirror images of each other and cannot be superimposed.

对映体是彼此的镜像,无法重叠。

例句

1.Furthermore, we discovered the recrystallization solvent for separation of the diastereomer.

发现了分离非对映异构体的重结晶溶剂。

2.Furthermore, we discovered the recrystallization solvent for separation of the diastereomer.

发现了分离非对映异构体的重结晶溶剂。

3.The separation of diastereomers 非对映体 is often easier than that of enantiomers.

分离非对映体通常比分离对映体更容易.

4.When studying reaction mechanisms, it is important to identify diastereomers 非对映体 produced.

在研究反应机制时,识别生成的非对映体是很重要的.

5.The two compounds are not mirror images, making them a pair of diastereomers 非对映体.

这两种化合物不是镜像,因此它们是一对非对映体.

6.In organic chemistry, diastereomers 非对映体 can have different physical properties.

在有机化学中,非对映体可能具有不同的物理性质.

7.Pharmaceuticals can exist as diastereomers 非对映体, each with distinct biological activity.

药物可以以非对映体的形式存在,每种具有不同的生物活性.

作文

In the fascinating world of chemistry, the study of stereochemistry plays a crucial role in understanding how molecules interact with one another. One important concept within this field is that of a diastereomer, which refers to a type of stereoisomer that is not an enantiomer. To grasp the significance of diastereomers, it is essential to first understand what stereoisomers are. Stereoisomers are compounds that have the same molecular formula and connectivity of atoms but differ in the spatial arrangement of those atoms. This difference in arrangement can lead to varying chemical and physical properties, which is why chemists pay close attention to these variations.Unlike enantiomers, which are mirror images of each other and possess identical physical properties except for their interaction with polarized light, diastereomers do not exhibit this symmetry. They are configurational isomers that cannot be superimposed on one another, leading to distinct differences in their properties. For example, consider the case of a compound with multiple chiral centers. If we change the configuration at one chiral center while keeping the others constant, we create a diastereomer. This alteration can significantly affect the molecule's reactivity, solubility, and even biological activity.The existence of diastereomers is particularly significant in the pharmaceutical industry. Many drugs are composed of chiral molecules, and the presence of diastereomers can result in different therapeutic effects. One diastereomer may exhibit the desired biological activity, while its counterpart may be less effective or even harmful. Therefore, understanding the relationship between diastereomers and their biological activity is vital for drug development and safety assessments.Another interesting aspect of diastereomers is their potential for separation. Because they have different physical properties, such as boiling points and solubilities, diastereomers can often be separated using standard techniques like crystallization or chromatography. This ability to distinguish between diastereomers makes them valuable in synthetic chemistry, where chemists can selectively produce the desired isomer for specific applications.In conclusion, the concept of diastereomers is a fundamental part of stereochemistry that has far-reaching implications in various scientific fields, especially in pharmaceuticals. By recognizing the differences between diastereomers and their enantiomer counterparts, chemists can better understand molecular interactions and develop more effective drugs. As research continues to evolve, the importance of diastereomers in both theoretical studies and practical applications will undoubtedly grow, providing deeper insights into the intricate nature of chemical compounds and their behavior in biological systems.

在化学的迷人世界中,立体化学的研究在理解分子之间的相互作用方面发挥着至关重要的作用。在这一领域中,一个重要的概念是diastereomer,它指的是一种不是对映体的立体异构体。要理解diastereomers的重要性,首先必须了解什么是立体异构体。立体异构体是指具有相同分子式和原子连接方式,但在原子的空间排列上有所不同的化合物。这种排列的差异可能导致不同的化学和物理性质,这就是为什么化学家会密切关注这些变化。与对映体不同,对映体是彼此的镜像,并且除了与偏振光的相互作用外,具有相同的物理性质,而diastereomers则不具备这种对称性。它们是不能重叠的构型异构体,导致其性质存在明显差异。例如,考虑一个具有多个手性中心的化合物。如果我们在保持其他手性中心不变的情况下改变一个手性中心的构型,就会产生一个diastereomer。这种变化可以显著影响分子的反应性、溶解度,甚至生物活性。diastereomers的存在对于制药行业尤其重要。许多药物由手性分子组成,而diastereomers的存在可能导致不同的治疗效果。一个diastereomer可能表现出所需的生物活性,而其对应物可能效果较差甚至有害。因此,理解diastereomers与其生物活性之间的关系对于药物开发和安全评估至关重要。diastereomers的另一个有趣方面是它们的分离潜力。由于它们具有不同的物理性质,如沸点和溶解度,diastereomers通常可以使用标准技术如结晶或色谱法进行分离。这种区分diastereomers的能力使它们在合成化学中变得有价值,化学家可以选择性地生产特定应用所需的异构体。总之,diastereomers的概念是立体化学的一个基本部分,对各种科学领域,尤其是制药领域具有深远的影响。通过认识到diastereomers与其对映体之间的差异,化学家可以更好地理解分子相互作用并开发更有效的药物。随着研究的不断发展,diastereomers在理论研究和实际应用中的重要性无疑会增长,为深入了解化合物的复杂性质及其在生物系统中的行为提供更深刻的见解。