scale factor
简明释义
标度系数
英英释义
例句
1.The scale factor 比例因子 for the model train set is 1:87, meaning the model is 87 times smaller than the real train.
这个模型火车套件的 scale factor 比例因子 是1:87,意味着模型比真实火车小87倍。
2.In architectural design, the scale factor 比例因子 helps architects create scaled models of buildings.
在建筑设计中,scale factor 比例因子 帮助建筑师创建建筑的缩放模型。
3.To convert measurements from a blueprint to real life, you must know the scale factor 比例因子 used in the drawing.
要将蓝图中的测量转换为现实生活中的尺寸,必须知道图纸中使用的 scale factor 比例因子 。
4.In a geometric drawing, the scale factor 比例因子 determines how much larger or smaller the drawing is compared to the actual object.
在几何图形中,scale factor 比例因子 决定了图纸与实际物体的大小关系。
5.When resizing images, you need to calculate the scale factor 比例因子 to maintain the aspect ratio.
在调整图像大小时,需要计算 scale factor 比例因子 以保持纵横比。
作文
In mathematics and geometry, understanding the concept of a scale factor is crucial for solving various problems related to proportionality and similarity. The scale factor can be defined as a number that scales, or multiplies, some quantity. It is often used when enlarging or reducing figures in a two-dimensional space. For instance, if we have a triangle with sides measuring 3 cm, 4 cm, and 5 cm, and we want to create a larger triangle that is twice the size, we would use a scale factor of 2. This means that each side of the original triangle will be multiplied by 2, resulting in a new triangle with sides measuring 6 cm, 8 cm, and 10 cm.The application of scale factor extends beyond mere geometric shapes; it is also applicable in real-world scenarios, such as architecture and design. When architects create blueprints for buildings, they often use a scale factor to represent the dimensions of the building accurately on paper. For example, a blueprint might use a scale factor of 1:100, indicating that 1 unit on the blueprint corresponds to 100 units in reality. This allows builders and engineers to visualize the structure's proportions before construction begins.Another important aspect of the scale factor is its role in map reading and navigation. Maps are typically drawn to scale, meaning that a certain distance on the map corresponds to a specific distance in the real world. For instance, if a map has a scale factor of 1:50,000, this indicates that 1 cm on the map represents 50,000 cm (or 500 meters) in reality. Understanding this scale factor is essential for accurately interpreting distances and planning routes.Moreover, the concept of scale factor is not limited to physical dimensions. In data analysis, for example, scaling factors can be used to normalize data sets. When comparing different data sets that vary significantly in scale, applying a scale factor can help bring the data into a more comparable range. This is particularly useful in fields like statistics and machine learning, where understanding relationships between variables is crucial.In conclusion, the scale factor is an essential concept across various disciplines, including mathematics, architecture, geography, and data analysis. By grasping how to apply a scale factor, individuals can enhance their problem-solving skills and improve their ability to interpret and manipulate both abstract concepts and real-world scenarios. Whether one is enlarging a shape, reading a map, or analyzing data, the scale factor serves as a fundamental tool that aids in understanding and representation. Thus, mastering the scale factor opens up a world of possibilities for effective communication and comprehension in both academic and practical applications.
在数学和几何中,理解比例因子的概念对于解决与比例和相似性相关的各种问题至关重要。比例因子可以定义为一个数,它缩放或乘以某个数量。在二维空间中,当我们放大或缩小图形时,它通常被使用。例如,如果我们有一个三角形,边长分别为3厘米、4厘米和5厘米,并且我们想创建一个大小是原来的两倍的更大三角形,我们将使用比例因子2。这意味着原始三角形的每条边都将乘以2,从而得到一个新三角形,边长分别为6厘米、8厘米和10厘米。比例因子的应用不仅限于简单的几何形状;它在建筑和设计等现实世界场景中也适用。当建筑师为建筑物创建蓝图时,他们通常会使用比例因子来准确地在纸上表示建筑物的尺寸。例如,蓝图可能使用1:100的比例因子,这表示蓝图上的1单位对应于现实中的100单位。这使得建筑商和工程师能够在施工开始之前可视化结构的比例。比例因子的另一个重要方面是它在地图阅读和导航中的作用。地图通常是按比例绘制的,这意味着地图上的某个距离对应于现实世界中的特定距离。例如,如果一张地图的比例因子为1:50,000,这表明地图上的1厘米代表现实中的50,000厘米(或500米)。理解这个比例因子对于准确解读距离和规划路线至关重要。此外,比例因子的概念并不限于物理尺寸。在数据分析中,例如,可以使用缩放因子来规范化数据集。当比较不同的规模差异显著的数据集时,应用比例因子可以帮助将数据带入更具可比性的范围。这在统计学和机器学习等领域尤其有用,因为理解变量之间的关系至关重要。总之,比例因子是各个学科中的一个基本概念,包括数学、建筑、地理和数据分析。通过掌握如何应用比例因子,个人可以增强他们的解决问题的能力,提高他们解释和处理抽象概念和现实场景的能力。无论是在放大形状、阅读地图还是分析数据,比例因子都是一种基本工具,有助于理解和表现。因此,掌握比例因子为有效沟通和理解打开了一个新的可能性世界,无论是在学术还是实际应用中。
相关单词