scale coefficient
简明释义
结垢系数
英英释义
A scale coefficient is a numerical factor used to multiply a quantity to adjust its scale or size in mathematical models or physical systems. | 比例系数是一个用于乘以一个数量的数值因子,以调整其在数学模型或物理系统中的尺度或大小。 |
例句
1.The scale coefficient 比例系数 is critical in modeling the relationship between temperature and pressure in gases.
在气体的温度与压力关系建模中,比例系数 scale coefficient 是至关重要的。
2.In this experiment, we calculated the scale coefficient 比例系数 to determine how the output changes with varying input levels.
在这个实验中,我们计算了比例系数 scale coefficient 以确定输出如何随着输入水平的变化而变化。
3.To adjust the performance of the machine, we need to modify the scale coefficient 比例系数 in the control system.
为了调整机器的性能,我们需要修改控制系统中的比例系数 scale coefficient 。
4.The scale coefficient 比例系数 helps in understanding the impact of different variables in our regression model.
在我们的回归模型中,比例系数 scale coefficient 有助于理解不同变量的影响。
5.By increasing the scale coefficient 比例系数, we observed a significant rise in the output efficiency of the process.
通过增加比例系数 scale coefficient ,我们观察到过程的输出效率显著提高。
作文
In the field of mathematics and engineering, the term scale coefficient refers to a numerical factor that is used to multiply a quantity in order to obtain a scaled version of that quantity. This concept is crucial when working with models or simulations that need to represent real-world scenarios accurately. For instance, when creating a model of a bridge, engineers often use a scale coefficient to ensure that the dimensions of the model are proportional to the actual structure. This allows them to analyze the model's behavior under various conditions without having to construct the full-sized bridge first.The application of the scale coefficient is not limited to engineering; it also finds relevance in fields such as economics, physics, and even art. In economics, for instance, a scale coefficient might be used to adjust financial figures for inflation or to compare economic data across different time periods. By applying this coefficient, economists can make more accurate assessments of growth and development over time.In physics, the scale coefficient can help in understanding how physical laws apply at different sizes. For example, the principles governing the motion of a small ball may differ from those affecting a large boulder due to the influence of gravity and air resistance. By using a scale coefficient, physicists can create experiments that simulate larger systems while keeping them manageable in size.Moreover, artists also utilize the concept of scale coefficient when creating works that require proportionate representations. When designing a sculpture or a painting, an artist may decide to use a specific scale coefficient to maintain the relationship between different elements of their work. This ensures that the final piece has the intended impact and aesthetic appeal.Understanding the scale coefficient is essential for anyone involved in quantitative analysis or modeling. It provides a systematic approach to scaling quantities, which can lead to more accurate results and better decision-making. For students and professionals alike, mastering this concept can enhance their ability to work with complex systems and data.In conclusion, the scale coefficient is a vital tool across various disciplines. Whether in engineering, economics, physics, or art, it serves as a bridge between abstract concepts and tangible applications. By grasping the significance of the scale coefficient, individuals can improve their analytical skills and gain a deeper appreciation for the interconnectedness of different fields of study. Ultimately, the ability to manipulate and understand scale coefficients can empower one to tackle real-world challenges with confidence and creativity.
在数学和工程领域,术语scale coefficient指的是一个数值因子,用于乘以某个量以获得该量的缩放版本。这个概念在处理需要准确表示现实场景的模型或模拟时至关重要。例如,在创建桥梁模型时,工程师通常使用scale coefficient来确保模型的尺寸与实际结构成比例。这使他们能够在不必先建造全尺寸桥梁的情况下,分析模型在各种条件下的表现。scale coefficient的应用不仅限于工程,它在经济学、物理学甚至艺术等领域也有相关性。例如,在经济学中,scale coefficient可能用于调整财务数字以应对通货膨胀,或比较不同时间段的经济数据。通过应用这个系数,经济学家可以更准确地评估经济的增长和发展。在物理学中,scale coefficient可以帮助理解物理法则如何适用于不同的大小。例如,小球的运动规律可能与大石头的运动规律有所不同,这取决于重力和空气阻力的影响。通过使用scale coefficient,物理学家可以创建模拟更大系统的实验,同时保持其可管理的规模。此外,艺术家在创作需要比例表示的作品时,也会利用scale coefficient的概念。在设计雕塑或绘画时,艺术家可能决定使用特定的scale coefficient来保持作品不同元素之间的关系。这确保了最终作品具有预期的影响和美学吸引力。理解scale coefficient对于任何参与定量分析或建模的人来说都是至关重要的。它提供了一种系统的方法来缩放数量,从而可能导致更准确的结果和更好的决策。对于学生和专业人士来说,掌握这一概念可以增强他们处理复杂系统和数据的能力。总之,scale coefficient是各个学科中的重要工具。无论是在工程、经济学、物理学还是艺术中,它都作为抽象概念与具体应用之间的桥梁。通过掌握scale coefficient的重要性,个人可以提高他们的分析技能,并更深入地欣赏不同研究领域之间的相互联系。最终,操控和理解scale coefficient的能力可以使人们自信且富有创造力地应对现实世界的挑战。