rotary oscillation
简明释义
旋转摆动
英英释义
Rotary oscillation refers to the motion of an object that rotates around an axis while simultaneously moving back and forth in a periodic manner. | 旋转振荡是指一个物体围绕轴线旋转的同时,以周期性方式前后移动的运动。 |
例句
1.The experiment demonstrated how rotary oscillation 旋转振荡 affects the stability of spinning objects.
实验展示了旋转振荡 rotary oscillation如何影响旋转物体的稳定性。
2.Engineers need to account for rotary oscillation 旋转振荡 when designing gyroscopes for navigation systems.
工程师在为导航系统设计陀螺仪时需要考虑旋转振荡 rotary oscillation。
3.The pendulum's rotary oscillation 旋转振荡 can be modeled using simple harmonic motion equations.
摆的旋转振荡 rotary oscillation可以用简单谐振动方程来建模。
4.In robotics, understanding rotary oscillation 旋转振荡 is crucial for designing efficient movement patterns.
在机器人技术中,理解旋转振荡 rotary oscillation 对于设计高效的运动模式至关重要。
5.The engine's performance improved significantly after optimizing the rotary oscillation 旋转振荡 of its components.
在优化其组件的旋转振荡 rotary oscillation后,发动机的性能显著提高。
作文
In the realm of physics and engineering, the concept of rotary oscillation (旋转振荡) plays a crucial role in understanding how various systems operate. Rotary oscillation refers to the motion of an object that rotates around an axis while simultaneously moving back and forth, creating a complex but fascinating pattern of movement. This dual nature of motion is essential in many applications, from simple mechanical devices to advanced technological systems. To better grasp the significance of rotary oscillation (旋转振荡), we can look at its applications in everyday life. One common example is the pendulum clock. The pendulum swings back and forth, demonstrating oscillation, while the clock's gears rotate to keep time. In this case, the rotary oscillation (旋转振荡) of the gears is synchronized with the oscillation of the pendulum, ensuring accurate timekeeping. This synchronization highlights the importance of understanding both rotational and oscillatory motions in mechanical design. Furthermore, rotary oscillation (旋转振荡) is also found in various engineering systems, such as gyroscopes. Gyroscopes utilize the principles of rotary oscillation (旋转振荡) to maintain orientation and stability. When a gyroscope spins, it creates angular momentum, which allows it to resist changes in its orientation. This property is exploited in navigation systems for aircraft and spacecraft, where precise control over orientation is vital for safe and effective operation. Moreover, the study of rotary oscillation (旋转振荡) extends beyond mechanical systems. In the field of robotics, engineers often design robotic arms that mimic human movements. These robotic arms rely on rotary oscillation (旋转振荡) to perform tasks with precision and fluidity. By programming the robotic joints to oscillate in a rotary manner, engineers can achieve a range of motion that closely resembles human dexterity. This application underscores the versatility of rotary oscillation (旋转振荡) in creating sophisticated and functional machines. In addition, understanding rotary oscillation (旋转振荡) is essential in the field of acoustics. Many musical instruments, such as guitars and violins, produce sound through oscillation. The strings of these instruments vibrate, creating waves that travel through the air. When a musician plucks a string, it undergoes rotary oscillation (旋转振荡), producing sound waves that resonate and create music. This interplay between rotary motion and oscillation illustrates how fundamental principles of physics are applied in the arts. In conclusion, the concept of rotary oscillation (旋转振荡) is integral to various fields, including mechanics, robotics, and acoustics. By understanding the principles behind rotary oscillation (旋转振荡), we can better appreciate the complexity and beauty of motion in our world. Whether in the ticking of a clock, the stability of a gyroscope, or the melody of a musical instrument, rotary oscillation (旋转振荡) is a fundamental aspect of how we interact with the physical universe. As technology advances, the exploration of rotary oscillation (旋转振荡) will continue to inspire innovation and discovery across multiple disciplines.
在物理和工程学领域,rotary oscillation(旋转振荡)的概念在理解各种系统如何运作方面发挥着至关重要的作用。Rotary oscillation指的是一个物体绕着一个轴旋转,同时前后移动,形成一种复杂而迷人的运动模式。这种双重运动特性在许多应用中都是必不可少的,从简单的机械设备到先进的技术系统。为了更好地理解rotary oscillation(旋转振荡)的重要性,我们可以看看它在日常生活中的应用。一个常见的例子是摆钟。摆锤来回摆动,展示了振荡,而钟表的齿轮则旋转以保持时间。在这种情况下,齿轮的rotary oscillation(旋转振荡)与摆锤的振荡同步,确保了准确的计时。这种同步性凸显了在机械设计中理解旋转和振荡运动的重要性。此外,rotary oscillation(旋转振荡)也存在于各种工程系统中,例如陀螺仪。陀螺仪利用rotary oscillation(旋转振荡)的原理来保持方向和稳定性。当陀螺仪旋转时,它产生角动量,使其能够抵抗方向的变化。这一特性被应用于飞机和航天器的导航系统,在这些系统中,对方向的精确控制对安全和有效的操作至关重要。此外,rotary oscillation(旋转振荡)的研究不仅限于机械系统。在机器人领域,工程师们经常设计模仿人类运动的机器人手臂。这些机器人手臂依赖于rotary oscillation(旋转振荡)来执行精确和流畅的任务。通过编程使机器人关节以旋转方式振荡,工程师可以实现类似于人类灵活性的运动范围。这一应用突显了rotary oscillation(旋转振荡)在创建复杂和功能性机器中的多样性。此外,理解rotary oscillation(旋转振荡)在声学领域也是至关重要的。许多乐器,如吉他和小提琴,通过振荡产生声音。这些乐器的弦振动,产生传播通过空气的波。当音乐家拨动弦时,它经历rotary oscillation(旋转振荡),产生共鸣的声波并创造音乐。这种旋转运动与振荡之间的相互作用说明了物理学基本原理在艺术中的应用。总之,rotary oscillation(旋转振荡)的概念在机械、机器人和声学等多个领域中都是不可或缺的。通过理解rotary oscillation(旋转振荡)背后的原理,我们可以更好地欣赏我们世界中运动的复杂性和美感。无论是在钟表的滴答声、陀螺仪的稳定性,还是乐器的旋律中,rotary oscillation(旋转振荡)都是我们与物理宇宙互动的基本方面。随着技术的发展,探索rotary oscillation(旋转振荡)将继续激发各个学科的创新和发现。
相关单词