resultant speed
简明释义
合成速度
英英释义
Resultant speed refers to the overall speed of an object when all contributing factors, such as direction and magnitude of velocity, are taken into account. | 合成速度是指在考虑所有影响因素(如速度的方向和大小)后,物体的整体速度。 |
例句
1.When two trains move towards each other, their resultant speed 合成速度 is the sum of their individual speeds.
当两列火车朝彼此驶来时,它们的合成速度 resultant speed 是它们各自速度的总和。
2.To find the resultant speed 合成速度 of a cyclist riding with a tailwind, you need to add the wind speed to the cyclist's speed.
要找到骑自行车者在顺风下的合成速度 resultant speed,你需要将风速加到骑行者的速度上。
3.The boat's resultant speed 合成速度 was calculated by adding the speed of the current to the speed of the boat.
船的合成速度 resultant speed 是通过将水流的速度与船的速度相加计算得出的。
4.The resultant speed 合成速度 of an airplane flying against the wind is less than its cruising speed.
一架飞机逆风飞行时的合成速度 resultant speed 小于其巡航速度。
5.A swimmer's resultant speed 合成速度 in still water differs from that in a flowing river.
游泳者在静水中的合成速度 resultant speed 与在流动河水中的不同。
作文
Understanding the concept of resultant speed is essential in various fields, including physics and engineering. Resultant speed refers to the overall speed of an object when multiple velocities are acting upon it. This can occur in everyday situations, such as a car moving in a certain direction while being affected by wind or another vehicle. By analyzing the components of movement, we can determine the resultant speed and make informed decisions based on that information.For instance, consider a boat traveling across a river. If the boat has a speed of 5 km/h relative to the water and the river current flows at 3 km/h downstream, the resultant speed of the boat relative to the shore is not simply the addition of these speeds. Instead, we must apply vector addition to find the true speed and direction of the boat. The resultant speed can be calculated using the Pythagorean theorem, resulting in a speed that is greater than either individual speed alone.Mathematically, if we denote the speed of the boat as 'v_b' and the speed of the current as 'v_c', the resultant speed 'v_r' can be represented as follows:v_r = √(v_b² + v_c²)In our example, substituting the values gives us:v_r = √(5² + 3²) = √(25 + 9) = √34 ≈ 5.83 km/h.This calculation shows how the resultant speed is influenced by both the speed of the boat and the speed of the current. It illustrates the importance of understanding how different forces interact to affect motion.Another practical example can be seen in aviation. An airplane flying into a headwind will experience a lower resultant speed relative to the ground than its airspeed. If an aircraft is flying at 200 km/h but encounters a 50 km/h headwind, the resultant speed over the ground would be:v_r = v_a - v_w = 200 km/h - 50 km/h = 150 km/h.This understanding is crucial for pilots, as they need to calculate their resultant speed to ensure accurate navigation and fuel efficiency. By factoring in wind speed and direction, aviators can optimize their flight paths and reach their destinations safely and efficiently.In summary, the term resultant speed encompasses the combined effects of various speeds acting on an object. Whether in water, air, or land, recognizing how different forces contribute to the overall speed is vital for effective problem-solving. As we encounter various scenarios in our daily lives, a solid grasp of resultant speed allows us to navigate challenges with greater confidence and precision. Understanding this concept not only enhances our knowledge of physics but also equips us with practical skills applicable in real-world situations.
理解结果速度的概念在物理学和工程等多个领域中至关重要。结果速度是指当多个速度作用于一个物体时,该物体的整体速度。这种情况在日常生活中经常出现,例如一辆汽车在某个方向行驶,同时受到风或其他车辆的影响。通过分析运动的各个组成部分,我们可以确定结果速度,并根据这些信息做出明智的决策。例如,考虑一艘横渡河流的船。如果船相对于水的速度为每小时5公里,而河流的水流速度为每小时3公里向下游,那么船相对于岸边的结果速度不仅仅是这两个速度的简单相加。相反,我们必须应用向量加法来找到船的真实速度和方向。可以使用勾股定理计算结果速度,得到的速度将大于单独的任一速度。在数学上,如果我们将船的速度表示为'v_b',水流的速度表示为'v_c',则结果速度 'v_r'可以表示为:v_r = √(v_b² + v_c²)在我们的例子中,替换数值得到:v_r = √(5² + 3²) = √(25 + 9) = √34 ≈ 5.83公里/小时。这个计算显示了结果速度如何受到船速和水流速度的影响。它说明了理解不同力如何相互作用以影响运动的重要性。另一个实际例子可以在航空中看到。一架飞机迎着逆风飞行时,其相对于地面的结果速度将低于其空速。如果一架飞机以每小时200公里的速度飞行,但遇到每小时50公里的逆风,则其结果速度为:v_r = v_a - v_w = 200公里/小时 - 50公里/小时 = 150公里/小时。这种理解对飞行员至关重要,因为他们需要计算自己的结果速度以确保准确导航和燃油效率。通过考虑风速和风向,飞行员可以优化飞行路径,安全高效地到达目的地。总之,术语结果速度涵盖了作用于物体的各种速度的综合效果。无论是在水中、空中还是陆地上,认识到不同力量如何共同影响整体速度对于有效解决问题至关重要。当我们在日常生活中遇到各种场景时,扎实掌握结果速度使我们能够更自信、更精确地应对挑战。理解这一概念不仅增强了我们对物理学的知识,还赋予我们在现实世界中适用的实用技能。
相关单词