quantise
简明释义
v. (使)量子化;把……分层(等于 quantize)
第 三 人 称 单 数 q u a n t i s e s
现 在 分 词 q u a n t i s i n g
过 去 式 q u a n t i s e d
过 去 分 词 q u a n t i s e d
英英释义
单词用法
对信号进行量子化 | |
对数据进行量子化 | |
量子化为不同级别 | |
分步量子化 | |
量子化为特定值 | |
用于数字处理的量子化 |
同义词
离散化 | 数据被离散化以简化分析。 | ||
量化 | 我们需要量化结果以便更好地理解。 | ||
采样 | 信号在规则的间隔处进行了采样。 |
反义词
连续体 | 这些数据可以被视为一个连续体进行分析。 | ||
平滑的 | The function is smooth and does not have any abrupt changes. | 这个函数是平滑的,没有任何突变。 |
例句
1.When we quantise the data, we lose some information but gain efficiency in processing.
当我们量子化数据时,我们会失去一些信息,但在处理效率上获得了提升。
2.In quantum mechanics, particles are said to quantise their energy levels, meaning they can only exist in specific states.
在量子力学中,粒子被认为会量子化它们的能量水平,这意味着它们只能存在于特定的状态。
3.Digital audio systems quantise sound waves to create a digital representation of the audio.
数字音频系统量子化声波,以创建音频的数字表示。
4.The process of quantising a signal involves converting continuous values into discrete values.
对信号进行量子化的过程涉及将连续值转换为离散值。
5.To accurately model the behavior of electrons, physicists must quantise their position and momentum.
为了准确模拟电子的行为,物理学家必须量子化它们的位置和动量。
作文
In the realm of physics and mathematics, the concept of quantisation is fundamental to understanding the behavior of particles at the quantum level. To quantise (量子化) means to restrict a variable to take on discrete values rather than a continuous range. This process is essential in the formulation of quantum mechanics, which describes the physical properties of nature at the scale of atoms and subatomic particles. For instance, when we consider the energy levels of electrons in an atom, these electrons do not occupy any arbitrary energy level but are instead confined to specific energy states. This phenomenon can be illustrated through the example of the hydrogen atom, where electrons can only exist in certain allowed orbits corresponding to distinct energy levels. When an electron transitions from one energy level to another, it emits or absorbs a photon, the energy of which corresponds to the difference between these levels. Thus, the quantisation of energy levels is a key principle that governs the interaction between light and matter.Moreover, the concept of quantise (量子化) extends beyond just energy levels. It also applies to other physical quantities such as angular momentum and spin. For example, the angular momentum of an electron in an atom is quantised, meaning it can only take on certain discrete values defined by quantum numbers. This quantisation leads to the unique spectral lines observed in atomic spectra, which are characteristic of each element. The implications of quantise (量子化) are far-reaching, influencing various fields such as chemistry, materials science, and even technology. In chemistry, the quantisation of molecular energy levels explains phenomena such as chemical bonding and reaction mechanisms. In materials science, the electronic properties of materials are often described using quantum mechanics, where the behaviour of electrons is fundamentally quantised. Furthermore, the principles of quantise (量子化) have paved the way for technological advancements such as semiconductors and quantum computing. In the field of electronics, the quantisation of charge carriers in materials allows for the development of transistors, which are the building blocks of modern electronic devices. Quantum computing, on the other hand, utilizes the principles of superposition and entanglement, both of which are rooted in the quantised nature of quantum states. In conclusion, the concept of quantise (量子化) is an integral part of our understanding of the physical world. It highlights the discrete nature of various physical quantities and has profound implications across multiple scientific disciplines. As we continue to explore the quantum realm, the significance of quantisation will undoubtedly grow, leading to new discoveries and innovations that could reshape our understanding of the universe. Understanding how to quantise (量子化) variables is not just a theoretical exercise; it is a gateway to unlocking the mysteries of the cosmos and harnessing the power of quantum mechanics for practical applications.
在物理学和数学领域,量子化的概念对于理解量子层面粒子的行为至关重要。quantise(量子化)意味着将变量限制为离散值,而不是连续范围。这个过程在量子力学的形成中是必不可少的,量子力学描述了原子和亚原子粒子尺度上自然的物理特性。例如,当我们考虑原子中电子的能级时,这些电子并不占据任何任意的能级,而是被限制在特定的能态中。这个现象可以通过氢原子的例子来说明,其中电子只能存在于与特定能级相对应的某些允许轨道中。当电子从一个能级跃迁到另一个能级时,它会发射或吸收一个光子,其能量对应于这些能级之间的差异。因此,能级的量子化是控制光与物质相互作用的关键原则。此外,quantise(量子化)的概念不仅限于能级。它还适用于其他物理量,如角动量和自旋。例如,原子中电子的角动量是量子化的,这意味着它只能取特定的离散值,由量子数定义。这种量子化导致了在原子光谱中观察到的独特谱线,这些谱线是每种元素的特征。quantise(量子化)的影响深远,影响着化学、材料科学甚至技术等多个领域。在化学中,分子能级的量子化解释了化学键合和反应机制等现象。在材料科学中,材料的电子性质通常使用量子力学来描述,其中电子的行为是根本上量子化的。此外,quantise(量子化)原理为半导体和量子计算等技术进步铺平了道路。在电子学领域,材料中电荷载流子的量子化使现代电子设备的基础构件——晶体管得以发展。另一方面,量子计算利用叠加和纠缠的原理,而这两个原理都根植于量子态的量子化特性。总之,quantise(量子化)的概念是我们理解物理世界的一个不可或缺的部分。它突显了各种物理量的离散性质,并对多个科学学科产生了深远的影响。随着我们继续探索量子领域,量子化的重要性无疑会增加,导致新的发现和创新,这可能重塑我们对宇宙的理解。理解如何quantise(量子化)变量不仅仅是理论上的练习;它是开启宇宙奥秘和利用量子力学进行实际应用的门户。