refractory body
简明释义
耐火物体
英英释义
A refractory body is a type of material that is resistant to heat and able to withstand high temperatures without melting or deforming. | 耐火体是一种能够抵抗高温并在高温下不熔化或变形的材料。 |
例句
1.The refractory body 耐火材料 used in the steel industry must withstand extreme conditions.
钢铁工业中使用的refractory body 耐火材料 必须能够承受极端条件。
2.The furnace is designed to withstand high temperatures, making it ideal for melting metals and handling the refractory body 耐火材料 used in construction.
这个炉子设计用于承受高温,非常适合熔化金属和处理建筑中使用的refractory body 耐火材料。
3.The chemist explained that the refractory body 耐火材料 is crucial for high-temperature reactions in the laboratory.
化学家解释说,refractory body 耐火材料 对于实验室中的高温反应至关重要。
4.When constructing a kiln, choosing the right refractory body 耐火材料 will enhance its durability and efficiency.
在建造窑时,选择合适的refractory body 耐火材料 将提高其耐用性和效率。
5.In pottery, a refractory body 耐火材料 ensures that the pieces can endure the firing process without deforming.
在陶艺中,refractory body 耐火材料 确保作品在烧制过程中不变形。
作文
In the field of materials science, the term refractory body refers to a type of material that has a high melting point and is capable of withstanding extreme temperatures without deforming or losing its integrity. These materials are crucial in various industrial applications, particularly in the manufacturing of furnaces, kilns, and reactors. The ability of a refractory body to maintain its structural integrity at high temperatures makes it an essential component in processes such as metal smelting, glass production, and ceramics manufacturing.The significance of refractory bodies cannot be overstated. In industries where high temperatures are the norm, using materials that can resist thermal shock and chemical erosion is vital. For example, in the steel industry, refractories line the furnaces and ladles that hold molten metal. Without these refractory bodies, the intense heat generated could easily damage the furnace structure, leading to costly repairs and downtime.Another important aspect of refractory bodies is their composition. Typically made from oxides, carbides, nitrides, and other compounds, these materials are engineered to provide specific properties tailored to their application. For instance, alumina, silica, and magnesia are common constituents of refractory bodies. Each of these materials imparts unique characteristics, such as thermal conductivity, mechanical strength, and resistance to chemical attack.Moreover, the production of refractory bodies involves sophisticated techniques and technologies. The manufacturing process often includes shaping the raw materials into desired forms, followed by firing them at high temperatures to enhance their properties. This process not only solidifies the material but also helps in achieving the necessary density and durability required for high-performance applications.As technology advances, the demand for more efficient and durable refractory bodies continues to grow. Research is increasingly focused on developing new formulations and methods to improve the performance of these materials. Innovations such as the incorporation of nanomaterials or the development of composite refractory bodies are being explored to push the boundaries of what is possible in high-temperature applications.In conclusion, the role of refractory bodies in modern industry is indispensable. Their ability to withstand extreme conditions while maintaining structural integrity makes them a key component in many manufacturing processes. As industries evolve and the need for advanced materials increases, understanding and improving refractory bodies will remain a critical area of research and development. The future of materials science lies in our capacity to innovate and create even more resilient and efficient refractory bodies that can meet the demands of an ever-changing industrial landscape.
在材料科学领域,短语耐火体指的是一种具有高熔点的材料,能够在极端温度下保持其完整性而不变形。这些材料在各种工业应用中至关重要,特别是在炉子、窑和反应器的制造中。耐火体能够在高温下保持其结构完整性,使其成为金属冶炼、玻璃生产和陶瓷制造等过程中的重要组成部分。耐火体的重要性不容小觑。在高温为常态的行业中,使用能够抵御热冲击和化学侵蚀的材料至关重要。例如,在钢铁工业中,耐火材料衬里熔融金属的炉子和铸造罐。如果没有这些耐火体,产生的强烈热量很容易损坏炉体结构,导致昂贵的维修和停工。耐火体的另一个重要方面是它们的组成。通常由氧化物、碳化物、氮化物和其他化合物制成,这些材料被设计成提供针对其应用的特定特性。例如,铝土矿、硅土和镁土是耐火体的常见成分。每种材料都赋予其独特的特性,例如热导率、机械强度和抗化学腐蚀能力。此外,耐火体的生产涉及复杂的技术和工艺。制造过程通常包括将原材料成型为所需形状,然后在高温下烧制以增强其特性。这个过程不仅固化材料,还帮助实现所需的密度和耐用性,以满足高性能应用的要求。随着技术的进步,对更高效、更耐用的耐火体的需求持续增长。研究越来越集中于开发新的配方和方法,以改善这些材料的性能。探索纳米材料的引入或复合耐火体的发展等创新正在被研究,以推动高温应用的可能性。总之,耐火体在现代工业中的作用不可或缺。它们能够在极端条件下保持结构完整性,使其成为许多制造过程的关键组成部分。随着工业的发展和对先进材料需求的增加,理解和改善耐火体将仍然是一个关键的研究和开发领域。材料科学的未来在于我们创新和创造出更具韧性和效率的耐火体,以满足不断变化的工业环境的需求。
相关单词