orbits
简明释义
n. [天][航]轨道(orbit 的复数);[昆]眼眶
v. 环绕……的轨道运行;进入轨道(orbit 的三单形式)
英英释义
单词用法
在轨道上;在轨道上运行;[俚语]飘飘然 | |
地球轨道 |
同义词
旋转 | 地球围绕太阳旋转。 | ||
环绕 | 月球环绕地球。 | ||
轨迹 | 卫星跟踪行星的轨道。 | ||
转动 | 行星在其轴上转动。 |
反义词
偏离 | 航天器偏离了其计划轨道。 | ||
游荡 | 彗星在太阳系中游荡。 |
例句
1.Astronomers had thought that the orbits of the planets were predictable.
天文学家早就认为,几大行星的轨道是可以预测的。
2.The most complex engineering project ever attempted has created an enormous set of interlinked modules that orbits the planet at more than 27,000 kilometres per hour.
有史以来最为复杂的工程项目创造了一组巨大的相互连接的模块,其以每小时27000公里的速度绕地球运行。
3.Dr Bottke has been tracking the orbits of asteroids.
伯克(Bottke)博士一直在追踪小行星的运行轨迹。
4.Mars and Earth have orbits which change with time.
火星和地球的轨道随着时间而发生改变。
它绕着一颗红矮星运行。
6.The Earth orbits in an ellipse.
地球沿椭圆形轨道运动。
但大部分轨道不会。
8.They will likely then travel close enough to neighboring planets to disturb their orbits also.
然后,它们很可能会飞得离邻近的行星足够近,从而扰乱它们的轨道。
9.Astronomers study the orbits (轨道) of comets to predict their return.
天文学家研究彗星的orbits(轨道)以预测它们的回归。
10.Satellites are placed in various orbits (轨道) to provide communication services.
卫星被放置在不同的orbits(轨道)中以提供通信服务。
11.The moon orbits (轨道) the Earth approximately every 27.3 days.
月球大约每27.3天orbits(轨道)地球一次。
12.The International Space Station travels in a low Earth orbit (轨道).
国际空间站在低地球orbit(轨道)内飞行。
13.The Earth and the other planets in our solar system all have their own distinct orbits (轨道).
地球和我们太阳系中的其他行星都有各自独特的orbits(轨道)。
作文
The concept of celestial bodies and their movements has fascinated humanity for centuries. One of the most intriguing aspects of this study is how planets, moons, and other celestial objects follow specific paths around larger bodies, known as their orbits. These orbits are not just random paths; they are the result of gravitational forces acting upon these bodies, creating a harmonious dance in the vastness of space.To understand orbits, we first need to grasp the fundamental principles of gravity. Sir Isaac Newton's law of universal gravitation explains that every mass attracts every other mass in the universe. This force is what keeps planets in their orbits around the sun and moons in their orbits around planets. For instance, Earth follows an elliptical path as it travels around the sun, completing one full revolution every year. This predictable movement is crucial for maintaining the cycles of seasons, which in turn sustain life on our planet.Moreover, the shape of an orbit can vary significantly depending on various factors, including the mass of the celestial bodies involved and their distance from each other. Some orbits are nearly circular, while others can be highly elongated ellipses. The eccentricity of an orbit determines how stretched out it is. For example, comets often have very elongated orbits that bring them close to the sun and then send them far into the outer reaches of the solar system.Understanding the dynamics of orbits is also essential for space exploration. When spacecraft are launched, scientists carefully calculate the required trajectory to ensure that they enter the correct orbit around Earth or another celestial body. This involves taking into account various factors such as velocity, angle of launch, and gravitational influences from other bodies. A small error in calculation can lead to a spacecraft missing its target orbit entirely, potentially jeopardizing missions.In addition to natural orbits, humans have created artificial satellites that also follow orbits around Earth. These satellites serve various purposes, from communication and weather monitoring to scientific research. The placement of these satellites in specific orbits is crucial for their functionality. For example, geostationary satellites are placed in an orbit where they match Earth's rotation, allowing them to stay fixed over one point on the surface. This is particularly useful for television broadcasts and weather monitoring.The study of orbits extends beyond our solar system. Astronomers observe the orbits of distant stars and galaxies, helping them understand the structure of the universe. The gravitational interactions between massive objects can influence the orbits of other celestial bodies, leading to fascinating phenomena such as gravitational lensing, where the light from a distant star is bent around a massive object, creating a magnified image.In conclusion, the study of orbits is an essential part of astronomy and space science. From understanding the movements of planets and moons to launching successful space missions and exploring the universe, orbits play a crucial role in our comprehension of the cosmos. As we continue to explore and learn more about the universe, the significance of orbits will undoubtedly remain a key focus in our quest for knowledge.
天体及其运动的概念数世纪以来一直吸引着人类。这个研究中最引人入胜的方面之一是行星、卫星和其他天体如何围绕更大天体沿特定路径运动,这些路径被称为它们的轨道。这些轨道并不是随机的路径;它们是作用于这些天体的引力的结果,创造出在广阔宇宙中的和谐舞蹈。要理解轨道,我们首先需要掌握重力的基本原理。艾萨克·牛顿的万有引力定律解释了宇宙中每个质量都吸引着其他质量。这种力量使得行星在太阳周围保持其轨道,而卫星在行星周围保持其轨道。例如,地球沿着椭圆形路径绕太阳运行,每年完成一次完整的革命。这种可预测的运动对于维持季节的循环至关重要,而这些循环又维持了我们星球上的生命。此外,轨道的形状可以根据涉及的天体的质量和它们之间的距离等各种因素而显著变化。有些轨道几乎是圆形的,而另一些则可能是高度拉长的椭圆形。轨道的偏心率决定了它的拉伸程度。例如,彗星通常具有非常拉长的轨道,使它们在接近太阳时,然后又被送往太阳系外的遥远区域。理解轨道的动态对于太空探索也至关重要。当航天器发射时,科学家们会仔细计算所需的轨迹,以确保它们进入正确的轨道,无论是围绕地球还是其他天体。这涉及考虑各种因素,如速度、发射角度和其他天体的引力影响。计算中的小错误可能导致航天器完全错过其目标轨道,可能危及任务。除了自然轨道,人类还创造了围绕地球运行的人造卫星。这些卫星服务于各种目的,从通信和气象监测到科学研究。这些卫星在特定的轨道上的放置对它们的功能至关重要。例如,静止卫星被放置在一种与地球自转相匹配的轨道上,使它们能够固定在地表的一个点上。这对于电视广播和气象监测尤其有用。轨道的研究超越了我们的太阳系。天文学家观察遥远恒星和星系的轨道,帮助他们理解宇宙的结构。大质量物体之间的引力相互作用可以影响其他天体的轨道,导致引力透镜等迷人的现象,即来自遥远恒星的光线被弯曲在一个大质量物体周围,创造出放大的图像。总之,轨道的研究是天文学和太空科学的重要组成部分。从理解行星和卫星的运动到成功发射太空任务和探索宇宙,轨道在我们理解宇宙的过程中发挥着至关重要的作用。随着我们继续探索和学习更多关于宇宙的知识,轨道的重要性无疑将继续成为我们追求知识的关键焦点。