radius vector
简明释义
辐向矢径
英英释义
例句
1.The radius vector 半径向量 can be represented as a function of time in parametric equations.
在参数方程中,半径向量 可以表示为时间的函数。
2.The radius vector 半径向量 helps in calculating the gravitational force acting on an object.
在计算作用于物体上的引力时,半径向量 半径向量 是很重要的。
3.In celestial mechanics, the radius vector 半径向量 is essential for determining the orbit of a planet.
在天体力学中,半径向量 对于确定行星的轨道至关重要。
4.To find the area swept by a rotating body, we can use the radius vector 半径向量 in our calculations.
为了找到旋转物体扫过的面积,我们可以在计算中使用半径向量。
5.In physics, the position of a particle can be described using a radius vector 半径向量 from the origin.
在物理学中,粒子的位置可以用从原点出发的半径向量来描述。
作文
In the realm of physics and mathematics, the term radius vector refers to a vector that extends from a central point, usually the origin of a coordinate system, to a specific point in space. This concept is essential in understanding various phenomena in mechanics, astronomy, and even in fields like robotics. The radius vector provides not only the distance from the origin to the point but also the direction in which that point lies. To illustrate this concept, consider the motion of a planet orbiting around a star. The star can be considered as the origin of our coordinate system, while the planet's position at any given time can be represented by its radius vector. As the planet moves in its elliptical orbit, the radius vector changes in both magnitude and direction. This changing vector is crucial for calculating the gravitational forces acting on the planet and understanding its orbital dynamics.In mathematical terms, if we denote the origin as O and the position of the point as P, the radius vector can be expressed as the vector OP. If we have coordinates (x, y, z) for point P, then the radius vector can be written in component form as OP = xi + yj + zk, where i, j, and k are the unit vectors along the x, y, and z axes, respectively. This representation allows us to perform various calculations involving the radius vector, such as finding the length of the vector using the Pythagorean theorem.Moreover, the radius vector plays a significant role in polar coordinates, where it simplifies the representation of points in a two-dimensional plane. In polar coordinates, a point is described by its distance from the origin (the length of the radius vector) and the angle it makes with a reference direction. This is particularly useful in scenarios where circular or rotational motion is involved, as it allows for a more intuitive understanding of the relationships between different points in the system.In engineering applications, the concept of the radius vector is also employed in robotics and automation. For example, when programming robotic arms or autonomous vehicles, engineers often use the radius vector to determine the position and orientation of the robot relative to a fixed point. By manipulating the radius vector, they can calculate the necessary movements required to achieve a desired position or trajectory.Understanding the radius vector is fundamental for anyone studying physics or engineering, as it serves as a building block for more complex concepts. Mastery of this term allows students and professionals alike to analyze motion, forces, and other physical phenomena with greater accuracy. As we delve deeper into the intricacies of the universe, the radius vector remains an indispensable tool in our quest for knowledge.In conclusion, the radius vector is a vital concept that transcends multiple disciplines, providing a framework for understanding motion and spatial relationships. Its applications range from celestial mechanics to modern robotics, demonstrating its versatility and importance in both theoretical and practical contexts. By grasping the significance of the radius vector, we enhance our ability to navigate the complexities of the physical world, paving the way for advancements in science and technology.
在物理学和数学领域,术语radius vector指的是从一个中心点(通常是坐标系统的原点)延伸到空间中特定点的向量。这个概念对于理解力学、天文学以及机器人技术等多个现象至关重要。radius vector不仅提供了从原点到该点的距离,还指明了该点所处的方向。为了说明这一概念,考虑一颗行星围绕恒星运动的情况。恒星可以视为我们坐标系统的原点,而行星在任何给定时刻的位置可以用它的radius vector来表示。当行星在其椭圆轨道上运动时,radius vector的大小和方向都会发生变化。这一变化的向量对于计算作用在行星上的引力和理解其轨道动力学至关重要。在数学上,如果我们将原点记为O,点P的位置记为P,则radius vector可以表示为向量OP。如果点P的坐标为(x, y, z),那么radius vector可以用分量形式写作OP = xi + yj + zk,其中i、j和k分别是沿x、y和z轴的单位向量。这种表示法使我们能够对涉及radius vector的各种计算进行处理,例如使用勾股定理找到向量的长度。此外,radius vector在极坐标中也发挥着重要作用,它简化了在二维平面中表示点的方式。在极坐标中,一个点由其距离原点的距离(即radius vector的长度)和与参考方向形成的角度来描述。这在涉及圆形或旋转运动的场景中特别有用,因为它允许我们更直观地理解系统中不同点之间的关系。在工程应用中,radius vector的概念也被用于机器人技术和自动化。例如,在编程机器人手臂或自主车辆时,工程师通常使用radius vector来确定机器人相对于固定点的位置和方向。通过操控radius vector,他们可以计算出实现所需位置或轨迹所需的运动。理解radius vector是任何学习物理或工程的人都必须掌握的基础,因为它是更复杂概念的基石。对这一术语的掌握使学生和专业人士能够更准确地分析运动、力以及其他物理现象。随着我们深入探索宇宙的复杂性,radius vector仍然是我们追求知识不可或缺的工具。总之,radius vector是一个重要的概念,跨越多个学科,为理解运动和空间关系提供了框架。它的应用范围从天体力学到现代机器人技术,展示了其多样性和在理论与实践中的重要性。通过掌握radius vector的意义,我们增强了在物理世界中应对复杂性的能力,为科学和技术的进步铺平了道路。
相关单词