radioisotope thermoelectric generator

简明释义

放射性同位素热电发生器

英英释义

A radioisotope thermoelectric generator (RTG) is a device that converts heat released by the decay of radioactive isotopes into electrical energy using thermoelectric materials.

放射性同位素热电发电机(RTG)是一种将放射性同位素衰变释放的热量通过热电材料转化为电能的设备。

例句

1.The radioisotope thermoelectric generator is crucial for powering rovers on Mars, allowing them to explore the planet's surface.

对于火星探测车来说,放射性同位素热电发生器至关重要,使它们能够探索行星表面。

2.Scientists rely on the radioisotope thermoelectric generator to operate deep-space missions for years without needing maintenance.

科学家依赖于放射性同位素热电发生器在深空任务中多年无需维护地运作。

3.The spacecraft was powered by a radioisotope thermoelectric generator, which provided a steady energy source for its instruments.

这艘航天器由一个放射性同位素热电发生器供电,为其仪器提供稳定的能源。

4.During the mission, the radioisotope thermoelectric generator ensured that all scientific equipment remained operational.

在任务期间,放射性同位素热电发生器确保所有科学设备保持正常运转。

5.The design of the radioisotope thermoelectric generator allows it to function in extreme temperatures found in space.

放射性同位素热电发生器的设计使其能够在太空中极端温度下正常工作。

作文

In the realm of space exploration and advanced technology, the radioisotope thermoelectric generator plays a crucial role in powering spacecraft and scientific instruments. A radioisotope thermoelectric generator (简称RTG) is a device that converts the heat released by the decay of radioactive isotopes into electricity. This technology has been instrumental in numerous space missions, including those to distant planets and moons where solar power is insufficient. The most notable example of an RTG in action is the Voyager spacecraft, which has been traveling through space since the late 1970s, relying on its radioisotope thermoelectric generator for continuous power.The principle behind a radioisotope thermoelectric generator is relatively straightforward. It utilizes the heat generated from the natural radioactive decay of isotopes, such as plutonium-238. As these isotopes decay, they release heat, which is then converted into electrical energy using thermoelectric materials. These materials create a voltage when there is a temperature difference across them, thus generating electricity. This process is highly efficient and allows for a steady power supply over long periods, often lasting several decades without the need for refueling.One of the main advantages of a radioisotope thermoelectric generator is its ability to provide power in environments where traditional power sources are not viable. For instance, in space, sunlight can be weak or non-existent, especially in the outer solar system. RTGs can operate in complete darkness and extreme temperatures, making them ideal for missions to places like the icy moons of Jupiter or Saturn. Furthermore, the longevity of RTGs means that they can support long-duration missions, which are essential for gathering data and conducting experiments far from Earth.Despite their many advantages, radioisotope thermoelectric generators also come with challenges and concerns. The use of radioactive materials raises safety issues, particularly in the event of a launch failure. To mitigate these risks, RTGs are designed with multiple layers of containment to prevent the release of radioactive material. Additionally, there are environmental considerations regarding the mining and handling of radioactive isotopes, which must be carefully managed to minimize impact.As we look to the future of space exploration, the radioisotope thermoelectric generator remains a vital technology. With missions planned to Mars, the outer planets, and even beyond our solar system, the need for reliable, long-lasting power sources will only increase. Researchers are continually exploring new materials and designs to enhance the efficiency and safety of RTGs, ensuring that they can meet the demands of future exploration endeavors.In conclusion, the radioisotope thermoelectric generator is an essential component of modern space technology, providing a robust solution for energy needs in the most challenging environments. Its ability to convert heat from radioactive decay into electricity allows spacecraft to operate independently of solar power, enabling humanity to explore the far reaches of our solar system and beyond. As we continue to push the boundaries of exploration, the significance of RTGs will undoubtedly grow, paving the way for new discoveries and advancements in our understanding of the universe.

在太空探索和先进技术的领域中,放射性同位素热电发生器在为航天器和科学仪器供电方面发挥着至关重要的作用。放射性同位素热电发生器(简称RTG)是一种将放射性同位素衰变释放的热量转化为电能的装置。这项技术在许多太空任务中发挥了重要作用,包括前往遥远行星和卫星的任务,在这些地方,太阳能不足。RTG的一个显著例子是旅行者航天器,自上世纪70年代末以来一直在太空中飞行,依靠其放射性同位素热电发生器提供持续的电力。放射性同位素热电发生器的原理相对简单。它利用如钚-238等同位素自然衰变产生的热量。当这些同位素衰变时,会释放热量,这些热量随后被热电材料转化为电能。这些材料在其两端存在温差时会产生电压,从而发电。这个过程效率很高,能够在长时间内提供稳定的电源,通常可以持续数十年而无需加油。放射性同位素热电发生器的主要优点之一是它能够在传统电源不可行的环境中提供电力。例如,在太空中,阳光可能微弱或根本不存在,尤其是在太阳系的外部。RTG可以在完全黑暗和极端温度下运行,使其成为前往木星或土星冰冷卫星等地方的任务的理想选择。此外,RTG的持久性意味着它们可以支持长期任务,这对于收集数据和进行实验至关重要。尽管有许多优点,放射性同位素热电发生器也面临挑战和担忧。使用放射性材料带来了安全问题,特别是在发射失败的情况下。为了减轻这些风险,RTG设计有多层封闭结构,以防止放射性材料的释放。此外,关于放射性同位素的开采和处理的环境考虑也必须谨慎管理,以最大限度地减少影响。展望未来的太空探索,放射性同位素热电发生器仍然是一项重要技术。随着计划前往火星、外行星甚至超越我们太阳系的任务,对可靠且持久的电源的需求只会增加。研究人员不断探索新材料和设计,以提高RTG的效率和安全性,确保它们能够满足未来探索工作的需求。总之,放射性同位素热电发生器是现代太空技术的重要组成部分,为最具挑战性的环境提供强大的能源解决方案。它将放射性衰变产生的热量转化为电力的能力使航天器能够独立于太阳能运行,使人类能够探索我们太阳系及更远的地方。随着我们不断推动探索的边界,RTG的重要性无疑将日益增长,为我们对宇宙的理解开辟新的发现和进步之路。

相关单词

radioisotope

radioisotope详解:怎么读、什么意思、用法

thermoelectric

thermoelectric详解:怎么读、什么意思、用法

generator

generator详解:怎么读、什么意思、用法