abiogenetic
简明释义
英[ˌæbɪəʊdʒɪˈnetɪk]美[ˌæbɪoʊdʒɪˈnetɪk]
adj. 自然发生的;偶发的;自然发生论的;无生源说的
英英释义
Relating to abiogenesis, the process by which life arises naturally from non-living matter. | 与无生物生成有关,即生命自然从非生物物质中产生的过程。 |
单词用法
无生源起源 | |
无生源理论 | |
无生源过程 | |
无生源假说 | |
无生源机制 | |
无生源模型 |
同义词
反义词
生物遗传的 | Biogenetic processes are essential for understanding evolution. | 生物遗传过程对于理解进化至关重要。 | |
生物的 | The biological basis of life is a fundamental concept in science. | 生命的生物基础是科学中的一个基本概念。 |
例句
1.Some researchers believe that abiogenetic 无生源的 reactions could occur on other planets, potentially leading to extraterrestrial life.
一些研究人员认为,无生源的反应可能在其他行星上发生,从而可能导致外星生命的出现。
2.Scientists are studying abiogenetic 无生源的 processes to understand how life might have started on Earth.
科学家们正在研究无生源的过程,以了解生命是如何在地球上开始的。
3.The concept of abiogenetic 无生源的 evolution challenges traditional views of biology.
无生源的进化概念挑战了传统的生物学观点。
4.Understanding abiogenetic 无生源的 mechanisms is crucial for the field of astrobiology.
理解无生源的机制对天体生物学领域至关重要。
5.The theory of abiogenetic 无生源的 origins suggests that life can arise from non-living matter.
无生源的起源理论表明,生命可以从非生命物质中产生。
作文
The concept of life’s origins has fascinated scientists and philosophers for centuries. Among the various hypotheses proposed, the idea of abiogenetic processes stands out as a significant theory in the study of life's beginnings. Abiogenetic (自生的) refers to the natural process by which life arises from non-living matter, such as simple organic compounds. This theory suggests that, under certain conditions, these compounds can combine and evolve into more complex structures, eventually leading to the formation of living organisms.One of the most compelling aspects of abiogenetic theories is their implications for understanding the origins of life on Earth. Scientists believe that billions of years ago, our planet was a very different place, filled with primordial soup—an environment rich in chemicals that could facilitate the formation of organic molecules. Experiments, such as the famous Miller-Urey experiment in 1953, demonstrated that it was possible to create amino acids, the building blocks of proteins, from inorganic substances under conditions thought to mimic those of early Earth. This provided a strong argument for the abiogenetic hypothesis.Moreover, the exploration of extreme environments on Earth, such as hydrothermal vents and acidic lakes, has revealed that life can thrive in conditions previously thought to be inhospitable. These findings support the idea that life may have originated in similar extreme conditions through abiogenetic processes. Understanding these mechanisms not only sheds light on how life began but also opens up possibilities for finding life on other planets, where conditions may be vastly different from our own.However, the abiogenetic hypothesis is not without its challenges. Critics argue that while we can produce organic molecules in laboratory settings, this does not necessarily equate to the spontaneous generation of life. The transition from simple organic compounds to complex, self-replicating systems remains a significant gap in our understanding. Researchers continue to investigate the steps involved in this transition, exploring how simple molecules could evolve into the first living cells.In addition, the question of whether abiogenetic processes could occur elsewhere in the universe remains open. The discovery of exoplanets within the habitable zone of their stars has sparked interest in astrobiology—the study of potential life beyond Earth. If abiogenetic processes are indeed universal, then the building blocks of life might be widespread throughout the cosmos, waiting for the right conditions to emerge.In conclusion, the study of abiogenetic processes offers profound insights into the origins of life on Earth and potentially beyond. While there are still many unanswered questions, ongoing research continues to unravel the complexities of how life could arise from non-living matter. As we advance our understanding of these processes, we not only seek answers about our own existence but also expand our horizons to consider the possibility of life elsewhere in the universe. The journey to uncover the mysteries of abiogenetic origins is a testament to human curiosity and the relentless pursuit of knowledge.
生命起源的概念吸引了科学家和哲学家几个世纪。在提出的各种假设中,abiogenetic(自生的)过程的想法作为生命起源研究中的一个重要理论脱颖而出。Abiogenetic(自生的)指的是生命如何从非生命物质中自然产生的过程,例如简单的有机化合物。这个理论表明,在特定条件下,这些化合物可以结合并演变成更复杂的结构,最终导致生物体的形成。Abiogenetic理论最引人注目的方面之一是它对理解地球上生命起源的影响。科学家们认为,数十亿年前,我们的星球是一个截然不同的地方,充满了原始汤——一种富含化学物质的环境,可以促进有机分子的形成。实验,例如1953年的米勒-尤里实验,证明在被认为模仿早期地球条件的情况下,从无机物质中可以制造氨基酸,这是蛋白质的构建块。这为abiogenetic假说提供了强有力的论据。此外,对地球极端环境的探索,例如热液喷口和酸性湖泊,揭示了生命可以在以前被认为不适宜的条件下繁荣。这些发现支持了生命可能在类似极端条件下通过abiogenetic过程起源的观点。理解这些机制不仅阐明了生命是如何开始的,还为在其他星球上寻找生命打开了可能性,那里的条件可能与我们完全不同。然而,abiogenetic假说并非没有挑战。批评者认为,尽管我们可以在实验室环境中产生有机分子,但这并不一定等同于生命的自发生成。从简单的有机化合物到复杂的自我复制系统的过渡仍然是我们理解中的一个重大空白。研究人员继续调查这一过渡过程中涉及的步骤,探索简单分子如何演变成第一批活细胞。此外,abiogenetic过程是否可以在宇宙的其他地方发生仍然是一个悬而未决的问题。发现位于其恒星可居住区内的系外行星引发了对天体生物学的兴趣——研究地球以外潜在生命的学科。如果abiogenetic过程确实是普遍的,那么生命的构建块可能在宇宙中广泛存在,等待合适的条件出现。总之,abiogenetic过程的研究为理解地球及其可能之外的生命起源提供了深刻的见解。尽管仍有许多未解之谜,持续的研究不断揭示生命如何从非生命物质中产生的复杂性。当我们推进对这些过程的理解时,我们不仅寻求关于我们自身存在的答案,也扩展视野以考虑宇宙中其他生命的可能性。揭开abiogenetic起源之谜的旅程是人类好奇心和对知识不懈追求的证明。