proportional part
简明释义
比例部分
英英释义
A portion or segment that corresponds in size or amount to a specific ratio or proportion relative to a whole. | 与整体相对的特定比例或比率对应的部分或段落。 |
例句
1.In a partnership, each partner receives a proportional part 按比例分配的部分 of the profits based on their contribution.
在合伙企业中,每位合伙人根据其贡献获得利润的proportional part 按比例分配的部分。
2.In a budget, each department receives a proportional part 按比例分配的部分 of the total funds based on their needs.
在预算中,每个部门根据其需求获得总资金的proportional part 按比例分配的部分。
3.When calculating taxes, your income determines the proportional part 按比例分配的部分 you owe to the government.
在计算税收时,您的收入决定了您应向政府支付的proportional part 按比例分配的部分。
4.The proportional part 按比例分配的部分 of the profit will be distributed to all shareholders according to their investments.
利润的proportional part 按比例分配的部分将根据所有股东的投资进行分配。
5.To determine the proportional part 按比例分配的部分 of the land for each owner, we must consider the total area.
为了确定每位所有者的土地的proportional part 按比例分配的部分,我们必须考虑总面积。
作文
In today's world, understanding the concept of a proportional part is essential for various fields, including mathematics, economics, and even everyday decision-making. A proportional part refers to a portion or segment of a whole that is in direct relation to the size of that whole. For example, if we consider a pie divided into eight slices, each slice represents a proportional part of the entire pie. If someone eats one slice, they have consumed one-eighth, which is a proportional part of the total pie. This simple idea can be applied to more complex scenarios, such as budgeting or resource allocation.In economics, the notion of a proportional part becomes vital when analyzing income distribution among different segments of society. For instance, if we have a population of 100 people and their total income is $100,000, the average income per person would be $1,000. If one individual earns $10,000, their income is ten times the average, which means their earnings represent a larger proportional part of the total income. Understanding these proportions helps economists gauge inequality and devise strategies to address it.Moreover, in project management, the concept of proportional part can assist in assessing contributions from different team members. If a project requires 100 hours of work and one team member contributes 25 hours, their contribution is a proportional part of the total effort. This understanding allows for fair recognition and compensation based on the input provided by each member.In education, students often encounter problems that require them to calculate proportional parts. For instance, if a recipe calls for 2 cups of flour to make 12 cookies, but a student wants to make only 6 cookies, they need to determine the proportional part of flour required. By setting up a ratio, they can find that they only need 1 cup of flour, which is half of the original amount. This practical application reinforces the importance of understanding proportions in real-life situations.Furthermore, the concept of proportional part is crucial in data analysis. When interpreting statistical data, researchers often look for trends and patterns that reflect proportional parts of a dataset. For example, if a survey reveals that 60% of respondents prefer option A over option B, this percentage represents a significant proportional part of the total responses. Understanding these proportions allows stakeholders to make informed decisions based on the preferences of the majority.In conclusion, the term proportional part encapsulates a fundamental mathematical principle that extends beyond mere numbers. It plays a critical role in various aspects of life, from economics to education, and influences how we perceive fairness, equality, and efficiency. By grasping the significance of proportional parts, individuals can enhance their analytical skills and apply this knowledge to solve real-world problems effectively. As we navigate through an increasingly complex world, the ability to understand and utilize proportional parts will remain a valuable asset in both personal and professional contexts.
在当今世界,理解“proportional part”这一概念对于数学、经济学甚至日常决策都是至关重要的。“proportional part”指的是一个整体中与该整体大小直接相关的部分或片段。例如,如果我们考虑一个被分成八块的派,每一块代表了整个派的一个“proportional part”。如果有人吃掉了一块,他们就消耗了八分之一,这是整个派的一个“proportional part”。这个简单的想法可以应用于更复杂的场景,例如预算或资源分配。在经济学中,“proportional part”的概念在分析社会不同群体的收入分配时变得至关重要。例如,如果我们有100人,且他们的总收入为100,000美元,那么每个人的平均收入将是1,000美元。如果某个人赚取了10,000美元,他们的收入是平均收入的十倍,这意味着他们的收入占总收入的更大“proportional part”。理解这些比例有助于经济学家衡量不平等,并制定解决方案。此外,在项目管理中,“proportional part”的概念可以帮助评估不同团队成员的贡献。如果一个项目需要100小时的工作,而一个团队成员贡献了25小时,他们的贡献就是总努力的一个“proportional part”。这种理解使得根据每个成员提供的输入进行公平的认可和补偿成为可能。在教育中,学生们经常会遇到需要计算“proportional parts”的问题。例如,如果一个食谱需要2杯面粉来制作12个饼干,但学生只想制作6个饼干,他们需要确定所需面粉的“proportional part”。通过设置比例,他们可以发现只需要1杯面粉,这是原始数量的一半。这种实际应用强化了在现实生活中理解比例的重要性。此外,“proportional part”的概念在数据分析中至关重要。当解读统计数据时,研究人员通常会寻找反映数据集中“proportional parts”的趋势和模式。例如,如果一项调查显示60%的受访者更喜欢选项A而不是选项B,这个百分比代表了总响应的一个重要“proportional part”。理解这些比例使利益相关者能够根据大多数人的偏好做出明智的决策。总之,术语“proportional part”概括了一个基本的数学原理,这一原理超越了单纯的数字。它在生活的各个方面发挥着关键作用,从经济学到教育,影响着我们对公平、平等和效率的看法。通过掌握“proportional parts”的重要性,个人可以增强分析能力,并将这一知识有效应用于解决现实问题。在我们在一个日益复杂的世界中航行时,理解和利用“proportional parts”的能力将继续成为个人和职业环境中的宝贵资产。