principal section

简明释义

主剖面

英英释义

The principal section refers to a primary or main part of a structure, document, or system that holds significant importance or relevance.

主部分指的是结构、文件或系统中具有重要性或相关性的主要部分。

例句

1.In the architecture plan, the principal section 主要部分 illustrates the layout of the building.

在建筑平面图中,principal section 主要部分 显示了建筑的布局。

2.The principal section 主要部分 of the curriculum outlines the core subjects.

课程的 principal section 主要部分 概述了核心学科。

3.Please refer to the principal section 主要部分 of the manual for troubleshooting tips.

请参考手册的 principal section 主要部分 以获取故障排除技巧。

4.In the legal document, the principal section 主要部分 defines the terms of the agreement.

在法律文件中,principal section 主要部分 定义了协议的条款。

5.The principal section 主要部分 of this report highlights the key findings.

本报告的 principal section 主要部分 突出了关键发现。

作文

In the study of mathematics, particularly in geometry and calculus, the concept of a principal section is essential for understanding various properties of shapes and functions. A principal section refers to a specific slice or cross-section of a geometric figure or mathematical function that provides significant insights into its characteristics. For instance, when analyzing three-dimensional objects, taking a principal section can help us visualize and calculate important parameters such as area, volume, and surface properties. Consider the example of a cylinder. When we take a principal section of a cylinder by slicing it along its axis, we obtain a rectangle that represents the height and radius of the cylinder. This principal section not only simplifies the analysis but also allows for easier calculations related to the cylinder's dimensions. Similarly, in calculus, when we examine the behavior of functions, we often look at principal sections by evaluating limits and derivatives at specific points. These sections help us understand the overall behavior of the function, such as identifying maxima, minima, and points of inflection.Furthermore, the application of principal sections extends beyond pure mathematics into fields such as engineering and physics. For engineers, understanding the principal section of a structural element is crucial for ensuring its stability and strength. For example, when designing beams or bridges, engineers must analyze the principal section to determine how forces will be distributed and where potential weaknesses may lie. This analysis is vital for creating safe and efficient structures.In the realm of physics, the idea of principal sections can be applied to the study of waves and vibrations. By examining the principal section of a vibrating string or membrane, physicists can gain insights into the modes of vibration and how energy is transferred through the medium. This understanding is fundamental in developing technologies such as musical instruments and sound engineering.Moreover, in the field of biology, the concept of principal sections is utilized in histology, where researchers analyze tissue samples. By preparing principal sections of biological tissues, scientists can observe cellular structures and functions under a microscope, leading to discoveries about health, disease, and the effects of various treatments. This technique is invaluable for medical research and diagnostics.In conclusion, the term principal section encompasses a wide range of applications across various disciplines. Whether in mathematics, engineering, physics, or biology, understanding the principal section of a given object or function is crucial for gaining deeper insights and making informed decisions. As we continue to explore the complexities of the world around us, the concept of principal sections will undoubtedly remain a fundamental tool in our analytical toolkit, aiding us in solving problems and advancing our knowledge in numerous fields.

在数学研究中,尤其是在几何和微积分领域,主切面的概念对于理解各种形状和函数的特性至关重要。主切面指的是几何图形或数学函数的特定切片或横截面,它提供了对其特征的重要见解。例如,在分析三维物体时,取一个主切面可以帮助我们可视化并计算与面积、体积和表面属性相关的重要参数。考虑一个圆柱体的例子。当我们通过沿着其轴线切割圆柱体来取一个主切面时,我们得到一个矩形,代表圆柱体的高度和半径。这个主切面不仅简化了分析,还使得与圆柱体尺寸相关的计算变得更容易。同样,在微积分中,当我们研究函数的行为时,通常会通过在特定点评估极限和导数来观察主切面。这些切面帮助我们理解函数的整体行为,例如识别最大值、最小值和拐点。此外,主切面的应用超越了纯数学,延伸到工程和物理等领域。对于工程师而言,理解结构元件的主切面对于确保其稳定性和强度至关重要。例如,在设计梁或桥时,工程师必须分析主切面以确定力量如何分布以及潜在的弱点可能在哪里。这种分析对于创建安全高效的结构至关重要。在物理学领域,主切面的概念可以应用于波动和振动的研究。通过检查振动弦或膜的主切面,物理学家可以深入了解振动模式以及能量如何通过介质传递。这种理解在开发诸如乐器和声音工程等技术中至关重要。此外,在生物学领域,主切面的概念被用于组织学,研究人员分析组织样本。通过准备生物组织的主切面,科学家可以在显微镜下观察细胞结构和功能,从而发现有关健康、疾病和各种治疗效果的知识。这种技术对医学研究和诊断至关重要。总之,术语主切面涵盖了各个学科的广泛应用。无论是在数学、工程、物理还是生物学中,理解给定对象或函数的主切面对于获得更深入的见解和做出明智的决策至关重要。随着我们继续探索周围世界的复杂性,主切面的概念无疑将继续成为我们分析工具箱中的基本工具,帮助我们解决问题并推动我们在众多领域的知识进步。