perturbation error analysis

简明释义

脉动误差分析

英英释义

Perturbation error analysis refers to the study and evaluation of errors that arise in a system or model due to small disturbances or changes in initial conditions, parameters, or inputs.

扰动误差分析是指对由于初始条件、参数或输入的微小扰动或变化而在系统或模型中产生的误差进行研究和评估。

例句

1.In systems biology, perturbation error analysis 扰动误差分析 helps to understand the effects of gene mutations on metabolic pathways.

在系统生物学中,perturbation error analysis 扰动误差分析 有助于理解基因突变对代谢途径的影响。

2.In computational fluid dynamics, perturbation error analysis 扰动误差分析 is crucial for ensuring the accuracy of simulation results.

在计算流体动力学中,perturbation error analysis 扰动误差分析 对于确保模拟结果的准确性至关重要。

3.The results from the perturbation error analysis 扰动误差分析 indicated that the model was robust against minor disturbances.

来自 perturbation error analysis 扰动误差分析 的结果表明,该模型对小扰动具有鲁棒性。

4.The team conducted a perturbation error analysis 扰动误差分析 to assess how small changes in input parameters affect the output.

团队进行了 perturbation error analysis 扰动误差分析 以评估输入参数的小变化如何影响输出。

5.Before finalizing the model, we performed a perturbation error analysis 扰动误差分析 to identify potential sources of error.

在最终确定模型之前,我们进行了 perturbation error analysis 扰动误差分析 以识别潜在的误差来源。

作文

In the realm of scientific research and engineering, accuracy and precision are paramount. One of the critical tools employed to ensure these qualities is the concept of perturbation error analysis, which refers to the study of how small changes in input can affect the output of a system. This method is particularly valuable in fields such as mathematics, physics, and computer science, where complex systems often exhibit sensitive dependence on initial conditions. 扰动误差分析是指研究输入中的小变化如何影响系统输出的方法。 To illustrate the importance of perturbation error analysis, consider a simple mathematical model that predicts the trajectory of a projectile. In this model, various parameters, such as the angle of launch and initial velocity, play crucial roles. By applying perturbation error analysis, researchers can determine how slight variations in these parameters might lead to significant deviations in the predicted path of the projectile. This insight helps engineers design more robust systems that can withstand uncertainties in real-world applications. Furthermore, perturbation error analysis is not limited to theoretical models; it also has practical implications in numerical simulations. In computational fluid dynamics, for example, small changes in boundary conditions can drastically alter the flow patterns of fluids. Through perturbation error analysis, scientists can quantify these changes and improve the reliability of their simulations. By understanding the potential errors introduced by perturbations, they can refine their models and achieve more accurate results. Moreover, perturbation error analysis plays a vital role in optimization problems. In many engineering applications, the goal is to find the best possible solution under given constraints. By employing perturbation error analysis, engineers can assess how sensitive their solutions are to changes in parameters. This sensitivity analysis allows them to identify which variables have the most significant impact on the outcome, leading to more informed decision-making. In summary, perturbation error analysis is an essential tool in the toolkit of researchers and engineers alike. It provides a systematic approach to understanding the effects of small changes in input on the output of complex systems. By applying this analysis, professionals can enhance the robustness of their models, improve the accuracy of their simulations, and make better-informed decisions in optimization scenarios. As technology continues to advance and systems grow increasingly complex, the relevance of perturbation error analysis will undoubtedly remain significant, helping us navigate the uncertainties inherent in scientific exploration and engineering design.

在科学研究和工程领域,准确性和精确性至关重要。确保这些质量的关键工具之一就是扰动误差分析的概念,它指的是研究输入中的小变化如何影响系统输出的方法。这种方法在数学、物理和计算机科学等领域特别有价值,因为复杂系统往往对初始条件表现出敏感依赖性。perturbation error analysis是指研究输入中的小变化如何影响系统输出的方法。为了说明扰动误差分析的重要性,考虑一个简单的数学模型,该模型预测了一个抛射物的轨迹。在这个模型中,各种参数,例如发射角度和初始速度,起着至关重要的作用。通过应用扰动误差分析,研究人员可以确定这些参数的微小变化可能导致预测的抛射物路径出现显著偏差。这一见解帮助工程师设计出更强健的系统,以承受现实应用中的不确定性。此外,扰动误差分析不仅限于理论模型;它在数值模拟中也具有实际意义。例如,在计算流体动力学中,边界条件的微小变化可能会极大改变流体的流动模式。通过扰动误差分析,科学家可以量化这些变化并提高其模拟的可靠性。通过理解扰动引入的潜在误差,他们可以完善模型,获得更准确的结果。此外,扰动误差分析在优化问题中也发挥着至关重要的作用。在许多工程应用中,目标是在给定约束下找到最佳解决方案。通过采用扰动误差分析,工程师可以评估他们的解决方案对参数变化的敏感性。这种敏感性分析使他们能够识别对结果影响最大的变量,从而做出更明智的决策。总之,扰动误差分析是研究人员和工程师工具箱中的一个重要工具。它提供了一种系统的方法来理解输入中微小变化对复杂系统输出的影响。通过应用这种分析,专业人士可以增强模型的鲁棒性,提高模拟的准确性,并在优化场景中做出更明智的决策。随着技术的不断进步和系统的日益复杂,扰动误差分析的相关性无疑将保持重要性,帮助我们应对科学探索和工程设计中固有的不确定性。

相关单词

perturbation

perturbation详解:怎么读、什么意思、用法

analysis

analysis详解:怎么读、什么意思、用法