tautomer
简明释义
英[/ˈtɔːtəˌmɜr/]美[/ˈtɔːtəˌmɜr/]
n. [物化] 互变异构体
英英释义
单词用法
同义词
互变异构体形式 | The keto-enol tautomerism is an important concept in organic chemistry. | 酮-烯醇互变异构是有机化学中的一个重要概念。 |
反义词
酮式 | The keto form of the compound is more stable than its tautomer. | 该化合物的酮式比其互变异构体更稳定。 | |
烯醇式 | In many reactions, the enol form is preferred due to its reactivity. | 在许多反应中,烯醇式由于其反应性而被优先选择。 |
例句
1.Then, using another tautomer(2H-indazole form), all of the above processes were repeated to investigate the effect of tautomerism upon the QSAR modelling.
其后,对所有化合物采用另一异构形式重复上述过程,以探讨互变异构对QSAR建模的影响。
2.The free energy of solvation is well correlated with the dipole moments of 2 thioxanthine tautomer.
水溶剂化自由能与异构体的气相偶极矩存在相关性。
3.Then, using another tautomer(2H-indazole form), all of the above processes were repeated to investigate the effect of tautomerism upon the QSAR modelling.
其后,对所有化合物采用另一异构形式重复上述过程,以探讨互变异构对QSAR建模的影响。
4.The geometries, relative energies, and activation energy of the tautomer and transition state were determined.
确定了互变异构体及过渡态的几何构型、相对能量和活化能。
5.Two potential Wells are found. One corresponds to the normal cytosine, while the other corresponds to its imino tautomer.
发现有两个势阱:其中一个对应正常的胞嘧啶,而另一个则对应它的顺式亚胺式互变异构体。
6.The tautomer exists in an equilibrium with its keto form.
该互变异构体与其酮形式处于平衡状态。
7.In organic chemistry, a tautomer can rapidly interconvert with its isomer.
在有机化学中,互变异构体可以迅速与其异构体相互转化。
8.The stability of a tautomer can greatly influence the outcome of a chemical reaction.
一个互变异构体的稳定性会极大影响化学反应的结果。
9.Researchers discovered that the tautomer of the compound had different biological activity.
研究人员发现该化合物的互变异构体具有不同的生物活性。
10.The reaction between the two compounds resulted in the formation of a new tautomer.
这两种化合物之间的反应导致了一个新的互变异构体的形成。
作文
Tautomerism is a fascinating concept in the field of chemistry that describes the ability of certain compounds to exist in two or more interconvertible forms, known as tautomers. These forms typically differ in the placement of a proton and the arrangement of electrons. Understanding tautomers is crucial for chemists, as it can significantly influence the properties and reactivity of organic molecules. For instance, the classic example of tautomerism is seen in the keto-enol tautomerism, where a ketone and its corresponding enol form can readily interconvert. This phenomenon plays an essential role in many biological processes, including enzyme function and metabolic pathways.The study of tautomers extends beyond mere academic interest; it has practical implications in drug design and development. Many pharmaceutical compounds exhibit tautomeric behavior, which can affect their pharmacokinetics and pharmacodynamics. For example, the efficacy of a drug may depend on whether it exists in its keto or enol form. Therefore, medicinal chemists must consider the tautomeric forms of a compound when predicting its behavior in biological systems.Moreover, tautomers are not limited to organic compounds. In coordination chemistry, metal complexes can also exhibit tautomerism. The ability of a ligand to switch between different tautomeric forms can influence the stability and reactivity of metal-ligand complexes. This aspect of tautomerism is particularly important in catalysis, where the active form of a catalyst may be one of several possible tautomers.To better understand the significance of tautomers, consider the role they play in the structure and function of nucleic acids. DNA and RNA contain bases that can exist in tautomeric forms, which can lead to mutations during DNA replication. If the wrong tautomer is incorporated into a growing DNA strand, it can result in base-pairing errors, ultimately leading to genetic changes. This highlights the importance of studying tautomers not just in synthetic chemistry but also in understanding fundamental biological processes.In summary, tautomers are an integral part of chemical science, influencing the behavior of molecules in various contexts. Their study opens up avenues for innovation in fields ranging from pharmaceuticals to molecular biology. As we continue to explore the world of chemistry, the concept of tautomerism will undoubtedly remain a key area of interest, providing insights that enhance our understanding of molecular interactions and reactivity. The implications of tautomers are vast, making them a topic worthy of further investigation and appreciation in both theoretical and applied chemistry.
互变异构是一种迷人的化学概念,描述某些化合物以两种或多种可互变的形式存在的能力,这些形式被称为互变异构体。这些形式通常在质子的放置和电子的排列上有所不同。理解互变异构体对于化学家来说至关重要,因为它可以显著影响有机分子的性质和反应性。例如,互变异构的经典例子是酮-烯醇互变异构,其中酮及其相应的烯醇形式可以自如地互相转化。这种现象在许多生物过程中起着重要作用,包括酶的功能和代谢途径。对互变异构体的研究不仅仅是学术兴趣,它在药物设计和开发中具有实际意义。许多药物化合物表现出互变异构行为,这会影响它们的药代动力学和药效学。例如,药物的有效性可能取决于它是以酮形式还是烯醇形式存在。因此,药物化学家在预测化合物在生物系统中的行为时,必须考虑化合物的互变异构形式。此外,互变异构体并不限于有机化合物。在配位化学中,金属络合物也可以表现出互变异构。配体在不同互变异构形式之间切换的能力可以影响金属-配体络合物的稳定性和反应性。互变异构的这一方面在催化中尤为重要,其中催化剂的活性形式可能是几种可能的互变异构体之一。为了更好地理解互变异构体的重要性,考虑它们在核酸的结构和功能中的作用。DNA和RNA包含的碱基可以以互变异构形式存在,这可能导致DNA复制过程中的突变。如果错误的互变异构体被纳入生长中的DNA链中,可能会导致碱基配对错误,最终导致遗传变化。这突显了研究互变异构体的重要性,不仅在合成化学中,也在理解基本生物过程方面。总之,互变异构体是化学科学中不可或缺的一部分,在各种背景下影响分子的行为。它们的研究为药物学到分子生物学等领域的创新开辟了途径。随着我们继续探索化学世界,互变异构的概念无疑将继续成为一个关键的研究领域,为我们提供增强对分子相互作用和反应性的理解的洞察。互变异构体的影响是巨大的,使其成为值得在理论和应用化学中进一步研究和欣赏的话题。