parallactic triangle
简明释义
天文三角形
英英释义
例句
1.Understanding the parallactic triangle is essential for students studying astrometry.
理解视差三角形对学习天体测量学的学生至关重要。
2.By measuring the angles in a parallactic triangle, one can derive the distance to nearby stars.
通过测量视差三角形中的角度,可以推导出到附近星星的距离。
3.The concept of a parallactic triangle is fundamental in calculating stellar parallax.
在计算恒星视差时,视差三角形的概念是基础。
4.In astronomy, the distance to a star can be calculated using the concept of a parallactic triangle.
在天文学中,可以使用视差三角形的概念来计算到星星的距离。
5.The parallactic triangle helps astronomers determine the position of celestial bodies in the night sky.
在夜空中,视差三角形帮助天文学家确定天体的位置。
作文
In the realm of astronomy and astrophysics, the concept of the parallactic triangle plays a crucial role in understanding the distances between celestial objects. The parallactic triangle is essentially a geometric construct used to determine the distance to stars and other astronomical bodies based on the principles of parallax. Parallax refers to the apparent shift in position of an object when viewed from different angles, typically as the observer moves. This phenomenon can be observed in everyday life; for instance, when you close one eye and then the other, nearby objects appear to shift position against a distant background.To visualize the parallactic triangle, imagine an observer on Earth looking at a star. The observer's position changes as the Earth orbits the Sun, creating two observation points over a period of six months. If we draw lines from each observation point to the star, we form a triangle. The base of this triangle is the distance between the two observation points on Earth, while the apex of the triangle is the position of the star. By measuring the angle of parallax—the angle subtended at the star by the two lines of sight—we can use trigonometry to calculate the distance to the star.The significance of the parallactic triangle extends beyond mere distance measurement. It provides a framework for understanding the scale of the universe. By determining the distances to nearby stars, astronomers can better comprehend the structure of our galaxy and its relation to other galaxies. This understanding is pivotal in the study of cosmology, the branch of astronomy that deals with the origins and eventual fate of the universe.Historically, the first successful measurement of stellar parallax was achieved by Friedrich Bessel in 1838 when he measured the parallax of the star 61 Cygni. This marked a monumental achievement in astronomy, validating the use of the parallactic triangle and establishing that stars were indeed located at vast distances from Earth. Prior to this, many believed that stars were fixed points of light on a celestial sphere, but Bessel's work helped to shift that perception.In contemporary astronomy, the parallactic triangle continues to be vital, especially with advancements in technology. Space telescopes like the Hubble Space Telescope and missions such as the Gaia spacecraft have enhanced our ability to measure parallax with unprecedented precision. Gaia, for instance, is mapping the positions of over a billion stars in our galaxy, utilizing the principles of the parallactic triangle to refine our understanding of stellar distances and motions.In conclusion, the parallactic triangle is not just a theoretical construct; it is a fundamental tool that has revolutionized our understanding of the cosmos. From its historical roots in the 19th century to its application in modern astronomy, the parallactic triangle exemplifies the intersection of geometry and astronomy. As we continue to explore the universe, the principles behind the parallactic triangle will undoubtedly remain integral to our quest for knowledge about the stars and beyond.
在天文学和天体物理学领域,视差三角形的概念在理解天体之间的距离方面发挥着至关重要的作用。视差三角形本质上是一个几何构造,用于根据视差原理确定星星和其他天体的距离。视差是指当从不同角度观察一个物体时,该物体位置的表观变化,通常是在观察者移动时可以观察到的。这种现象在日常生活中也可以观察到;例如,当你闭上一只眼睛再闭另一只眼睛时,近处的物体似乎在远处背景中位置发生了变化。为了可视化视差三角形,想象一下一个在地球上的观察者正在看一颗星星。随着地球绕太阳的轨道运动,观察者的位置在六个月内发生变化,形成两个观察点。如果我们从每个观察点画线到星星,就形成了一个三角形。这个三角形的底边是地球上两个观察点之间的距离,而三角形的顶点是星星的位置。通过测量视差角——在星星上由两条视线所夹的角度,我们可以利用三角学计算星星的距离。视差三角形的重要性超越了单纯的距离测量。它为理解宇宙的规模提供了框架。通过确定附近星星的距离,天文学家可以更好地理解我们银河系的结构及其与其他星系的关系。这种理解在宇宙学的研究中至关重要,宇宙学是研究宇宙起源及其最终命运的天文学分支。历史上,第一成功测量恒星视差的是弗里德里希·贝塞尔(Friedrich Bessel),他在1838年测量了61 Cygni星的视差。这标志着天文学的一个重大成就,验证了视差三角形的使用,并确立了恒星确实位于离地球遥远的距离。在此之前,许多人认为恒星是固定在天球上的光点,但贝塞尔的工作帮助改变了这种看法。在当代天文学中,视差三角形仍然至关重要,尤其是随着技术的进步。像哈勃太空望远镜和盖亚(Gaia)航天器这样的空间望远镜增强了我们以空前的精确度测量视差的能力。例如,盖亚正在绘制我们银河系中超过十亿颗星星的位置,利用视差三角形的原理来完善我们对恒星距离和运动的理解。总之,视差三角形不仅仅是一个理论构造;它是一个基本工具,彻底改变了我们对宇宙的理解。从19世纪的历史根源到现代天文学中的应用,视差三角形体现了几何学与天文学的交汇。随着我们继续探索宇宙,视差三角形背后的原理无疑将继续在我们对星星及其之外的知识追求中发挥重要作用。
相关单词