exonic
简明释义
外显子的
英英释义
Relating to or denoting the regions of a gene that are expressed as proteins. | 与基因中被表达为蛋白质的区域相关或表示的。 |
单词用法
同义词
反义词
内含子 | 内含子区域通常在RNA剪接过程中被移除。 | ||
非编码 | 非编码DNA不编码蛋白质。 |
例句
1.We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects.
我们使用一个已知导致剪切缺陷的83个内含子和35个外显子的突变来评估hsf的效率。
2.We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects.
我们使用一个已知导致剪切缺陷的83个内含子和35个外显子的突变来评估hsf的效率。
3.Sequencing the exonic 外显子 parts of the genome can reveal important information about protein-coding genes.
对基因组的外显子部分进行测序可以揭示有关编码蛋白质基因的重要信息。
4.Mutations in the exonic 外显子 sequences often lead to functional changes in proteins.
在外显子序列中的突变通常会导致蛋白质功能的变化。
5.The researchers focused on the exonic 外显子 regions to understand the genetic variations associated with the disease.
研究人员专注于外显子区域,以了解与该疾病相关的遗传变异。
6.The study analyzed both exonic 外显子 and intronic regions to provide a comprehensive view of gene expression.
该研究分析了外显子和内含子区域,以提供基因表达的全面视图。
7.Bioinformatics tools are used to predict the impact of exonic 外显子 mutations on protein structure.
生物信息学工具用于预测外显子突变对蛋白质结构的影响。
作文
In the field of genetics, understanding the structure and function of genes is paramount. One crucial aspect of gene architecture is the distinction between exons and introns. Exons are the segments of a gene that are expressed in the final mRNA product, while introns are non-coding sequences that are spliced out during the process of transcription. The term exonic refers to anything related to these coding regions of a gene. By studying exonic sequences, researchers can gain insights into how genes are regulated and how they contribute to an organism's traits.For example, when scientists investigate genetic disorders, they often focus on exonic regions because mutations in these areas can lead to significant changes in protein function. A single nucleotide change in an exonic sequence can result in a malfunctioning protein, potentially causing diseases such as cystic fibrosis or sickle cell anemia. Therefore, identifying and analyzing exonic mutations is critical for developing targeted therapies and personalized medicine.Furthermore, advances in genomic technologies have made it easier to sequence and analyze exonic regions. High-throughput sequencing techniques allow researchers to rapidly obtain data from many genes simultaneously. This capability has revolutionized our understanding of genetics, enabling the identification of exonic variants associated with various diseases. As a result, we are now better equipped to develop diagnostic tools and treatment strategies based on an individual’s unique exonic profile.Moreover, the study of exonic regions extends beyond human health. In agriculture, for instance, scientists are exploring the exonic sequences of crops to enhance desirable traits such as drought resistance or nutritional value. By manipulating exonic sequences through techniques like CRISPR gene editing, researchers aim to produce high-yield and resilient crop varieties that can withstand changing climate conditions.In summary, the concept of exonic sequences plays a vital role in our understanding of genetics and its applications. From medical research to agricultural advancements, the implications of studying exonic regions are vast and significant. As we continue to explore the complexities of the genome, the importance of exonic analysis will only grow, paving the way for new discoveries and innovations that can improve health outcomes and food security worldwide.
在遗传学领域,理解基因的结构和功能至关重要。基因结构的一个关键方面是外显子和内含子的区别。外显子是基因中在最终mRNA产物中表达的部分,而内含子是转录过程中被剪接出去的非编码序列。术语exonic指的是与这些基因的编码区域相关的任何事物。通过研究exonic序列,研究人员可以深入了解基因如何被调控以及它们如何影响生物体的特征。例如,当科学家研究遗传疾病时,他们通常关注exonic区域,因为这些区域的突变可能导致蛋白质功能的显著变化。在exonic序列中的单个核苷酸变化可能导致蛋白质功能失常,从而可能引发囊性纤维化或镰状细胞贫血等疾病。因此,识别和分析exonic突变对开发靶向疗法和个性化医学至关重要。此外,基因组技术的进步使得分析和测序exonic区域变得更加容易。高通量测序技术使研究人员能够快速从许多基因中同时获取数据。这种能力彻底改变了我们对遗传学的理解,使我们能够识别与各种疾病相关的exonic变异。因此,我们现在更有能力根据个体的独特exonic特征开发诊断工具和治疗策略。此外,对exonic区域的研究不仅限于人类健康。在农业中,科学家们正在探索作物的exonic序列,以增强抗旱性或营养价值等理想特性。通过利用CRISPR基因编辑等技术操控exonic序列,研究人员旨在生产能够抵御气候变化的高产和抗逆作物品种。总之,exonic序列的概念在我们理解遗传学及其应用中发挥着至关重要的作用。从医学研究到农业进步,研究exonic区域的意义广泛而深远。随着我们继续探索基因组的复杂性,对exonic分析的重要性只会增加,为改善全球健康结果和食品安全铺平道路。