obtuse angled triagnle
简明释义
钝角三角形
英英释义
A triangle in which one of the interior angles is greater than 90 degrees. | 一个三角形,其中一个内角大于90度。 |
例句
1.In my art project, I used an obtuse angled triangle (钝角三角形) to create a dynamic composition.
在我的艺术项目中,我使用了一个钝角三角形 (obtuse angled triangle) 来创造一个动态的构图。
2.In geometry class, we learned that an obtuse angled triangle (钝角三角形) has one angle greater than 90 degrees.
在几何课上,我们了解到一个钝角三角形 (obtuse angled triangle) 有一个角大于90度。
3.When measuring the angles, I realized that the triangle was an obtuse angled triangle (钝角三角形).
当我测量角度时,我意识到这个三角形是一个钝角三角形 (obtuse angled triangle)。
4.The architect designed the roof in the shape of an obtuse angled triangle (钝角三角形) for aesthetic purposes.
建筑师为了美观设计了一个形状为钝角三角形 (obtuse angled triangle) 的屋顶。
5.An obtuse angled triangle (钝角三角形) can be identified by its unique properties in trigonometry.
一个钝角三角形 (obtuse angled triangle) 可以通过其在三角学中的独特性质来识别。
作文
In the world of geometry, triangles are one of the most fundamental shapes that we encounter. Among the various types of triangles, the obtuse angled triangle stands out due to its unique characteristics. An obtuse angled triangle is defined as a triangle where one of its angles measures more than 90 degrees but less than 180 degrees. This distinctive feature gives the obtuse angled triangle its name, as 'obtuse' refers to angles greater than a right angle. Understanding the properties of an obtuse angled triangle is essential for anyone studying geometry. For instance, in any triangle, the sum of the internal angles always equals 180 degrees. Therefore, if one angle is obtuse, the other two must be acute, meaning they are each less than 90 degrees. This relationship between the angles helps us visualize and solve problems related to triangles, such as finding missing angles or determining the type of triangle based on its angles.The obtuse angled triangle can also be classified based on the lengths of its sides, which leads us to the concepts of scalene, isosceles, and equilateral triangles. A scalene triangle has all sides of different lengths, while an isosceles triangle has at least two sides of equal length. An equilateral triangle, on the other hand, has all three sides equal and all angles measuring 60 degrees, making it impossible to be an obtuse angled triangle. This classification allows us to explore various properties and theorems associated with triangles, enhancing our understanding of geometry.In practical applications, obtuse angled triangles can be found in architecture, engineering, and design. For example, when designing roofs or trusses, engineers often utilize the properties of obtuse angled triangles to ensure stability and aesthetic appeal. The obtuse angle can provide a unique visual element while maintaining structural integrity. Additionally, in art and design, the use of obtuse angled triangles can create interesting patterns and forms, demonstrating how geometry influences creativity.Furthermore, the study of obtuse angled triangles extends beyond traditional geometry into trigonometry. The relationships between the sides and angles of an obtuse angled triangle can be analyzed using trigonometric functions such as sine, cosine, and tangent. These functions allow us to calculate unknown sides or angles, providing valuable tools for solving real-world problems. For instance, in navigation and physics, understanding the properties of obtuse angled triangles can lead to accurate measurements and predictions.In conclusion, the obtuse angled triangle is not just a simple geometric shape; it is a fundamental concept that connects various mathematical disciplines and real-world applications. By grasping the characteristics and properties of obtuse angled triangles, students and professionals alike can enhance their analytical skills and apply their knowledge to solve complex problems. Whether in architecture, engineering, or mathematics, the obtuse angled triangle remains a vital component of our understanding of the world around us.
在几何学的世界中,三角形是我们遇到的最基本的形状之一。在各种类型的三角形中,钝角三角形因其独特的特性而脱颖而出。钝角三角形被定义为一个角度大于90度但小于180度的三角形。这一独特的特征使得钝角三角形得名,因为“钝”指的是大于直角的角。理解钝角三角形的性质对于任何学习几何的人来说都是至关重要的。例如,在任何三角形中,内部角的总和始终等于180度。因此,如果一个角是钝角,其他两个角必须是锐角,这意味着它们每个都小于90度。这种角之间的关系帮助我们可视化并解决与三角形相关的问题,例如寻找缺失的角或根据角的类型确定三角形的种类。钝角三角形还可以根据边的长度进行分类,这使我们能够探讨不等边、等腰和等边三角形的概念。不等边三角形的所有边长都不同,而等腰三角形至少有两条边相等。而等边三角形则所有三条边相等,且所有角度均为60度,因此不可能是钝角三角形。这种分类使我们能够探索与三角形相关的各种性质和定理,增强我们对几何的理解。在实际应用中,钝角三角形可以在建筑、工程和设计中找到。例如,在设计屋顶或桁架时,工程师常常利用钝角三角形的性质来确保稳定性和美观性。钝角可以提供独特的视觉元素,同时保持结构的完整性。此外,在艺术和设计中,使用钝角三角形可以创造有趣的图案和形状,展示几何如何影响创造力。此外,对钝角三角形的研究不仅限于传统几何,还延伸到三角函数学。可以使用正弦、余弦和正切等三角函数分析钝角三角形的边和角之间的关系。这些函数使我们能够计算未知的边或角,为解决现实世界的问题提供了宝贵的工具。例如,在导航和物理学中,理解钝角三角形的性质可以导致准确的测量和预测。总之,钝角三角形不仅仅是一个简单的几何形状;它是一个基本的概念,连接着各种数学学科和现实世界的应用。通过掌握钝角三角形的特点和性质,学生和专业人士都可以增强他们的分析能力,并将他们的知识应用于解决复杂的问题。无论是在建筑、工程还是数学中,钝角三角形仍然是我们理解周围世界的重要组成部分。
相关单词