negative feedback control system

简明释义

负反馈控制系统

英英释义

A negative feedback control system is a type of control mechanism that reduces the output or activity of a system when it deviates from a desired set point, thereby maintaining stability and equilibrium.

负反馈控制系统是一种控制机制,当系统偏离预期设定点时,减少系统的输出或活动,从而维持稳定和平衡。

例句

1.An automotive cruise control system uses a negative feedback control system to adjust the throttle position and maintain the desired speed.

汽车巡航控制系统使用负反馈控制系统来调整油门位置,以维持所需的速度。

2.In biological systems, human body temperature regulation is managed by a negative feedback control system that responds to temperature changes to maintain homeostasis.

在生物系统中,人体温度调节由一个负反馈控制系统管理,该系统响应温度变化以维持体内平衡。

3.The thermostat in your home is an example of a negative feedback control system, which maintains a stable temperature by adjusting heating or cooling based on the current temperature.

家中的温控器是一个负反馈控制系统的例子,它通过根据当前温度调整加热或冷却来维持稳定的温度。

4.The process of blood sugar regulation in the body relies on a negative feedback control system to keep glucose levels within a normal range.

体内的血糖调节过程依赖于一个负反馈控制系统,以保持葡萄糖水平在正常范围内。

5.Many industrial processes employ a negative feedback control system to ensure product quality by adjusting variables based on output measurements.

许多工业过程采用负反馈控制系统,通过根据输出测量调整变量来确保产品质量。

作文

In the realm of engineering and biological systems, the concept of a negative feedback control system is fundamental to maintaining stability and functionality. A negative feedback control system is a process in which the output of a system inhibits or counteracts its own input, thus regulating the system's behavior. This mechanism is crucial in various applications, from simple home heating systems to complex biological organisms.To illustrate the workings of a negative feedback control system, consider the example of a thermostat used in a heating system. When the temperature in a room falls below a set point, the thermostat detects this change and activates the heating system. As the heater warms the room, the temperature rises. Once it reaches the desired level, the thermostat senses this increase and turns off the heater. This cycle of action and reaction exemplifies how a negative feedback control system operates to maintain a constant temperature, preventing overheating or excessive cooling.In biological systems, negative feedback control systems are equally vital. Take the human body as an example; it maintains homeostasis through various feedback mechanisms. One such mechanism involves the regulation of blood glucose levels. When blood sugar rises after eating, the pancreas releases insulin. Insulin facilitates the uptake of glucose by cells, thereby lowering blood sugar levels. Once the levels stabilize, the secretion of insulin decreases. This intricate balance showcases how negative feedback control systems work to keep physiological parameters within a narrow range, ensuring optimal functioning of the body.The significance of negative feedback control systems extends beyond mere regulation; they also contribute to the robustness and resilience of systems. In engineering, for instance, control systems that incorporate negative feedback can adapt to changes and disturbances, ensuring consistent performance. This adaptability is crucial in industries where precision and reliability are paramount, such as aerospace and manufacturing. By employing negative feedback control systems, engineers can design systems that automatically correct deviations from desired performance metrics, enhancing safety and efficiency.Furthermore, understanding negative feedback control systems has implications for the development of artificial intelligence and machine learning algorithms. These technologies often mimic biological processes, utilizing feedback loops to improve their performance over time. For example, a machine learning model may adjust its parameters based on the errors it makes during training, embodying the principles of negative feedback control systems to refine its predictions and enhance accuracy.In conclusion, the negative feedback control system is a cornerstone of both natural and engineered systems. Its ability to maintain stability, adapt to changes, and ensure optimal performance highlights its importance across various fields. Whether in the context of climate control in our homes, the regulation of bodily functions, or advanced technological applications, the principles of negative feedback control systems resonate throughout our lives. As we continue to explore and innovate, the lessons learned from these systems will undoubtedly inform future advancements in technology and science, paving the way for more resilient and efficient solutions to the challenges we face.

在工程和生物系统的领域中,负反馈控制系统的概念对于维持稳定性和功能性是至关重要的。负反馈控制系统是一种过程,其中系统的输出抑制或抵消其自身输入,从而调节系统的行为。这种机制在各种应用中至关重要,从简单的家庭供暖系统到复杂的生物体。为了说明负反馈控制系统的工作原理,可以考虑一个用于供暖系统的恒温器的例子。当房间的温度低于设定点时,恒温器检测到这种变化并激活供暖系统。随着加热器使房间变暖,温度上升。一旦达到所需的水平,恒温器就会感知到这一增加并关闭加热器。这种动作与反应的循环展示了负反馈控制系统如何运作以维持恒定的温度,防止过热或过度冷却。在生物系统中,负反馈控制系统同样至关重要。以人类身体为例;它通过各种反馈机制维持稳态。其中一个机制涉及血糖水平的调节。当进食后血糖升高时,胰腺释放胰岛素。胰岛素促进细胞对葡萄糖的摄取,从而降低血糖水平。一旦水平稳定,胰岛素的分泌就会减少。这种复杂的平衡展示了负反馈控制系统如何工作,以保持生理参数在狭窄范围内,确保身体的最佳功能。负反馈控制系统的重要性不仅限于简单的调节;它们还对系统的鲁棒性和弹性做出了贡献。在工程学中,结合了负反馈的控制系统能够适应变化和干扰,确保一致的性能。这种适应能力在航空航天和制造等行业中至关重要,在这些行业中,精确性和可靠性是重中之重。通过采用负反馈控制系统,工程师可以设计出自动纠正偏差的系统,提高安全性和效率。此外,理解负反馈控制系统对人工智能和机器学习算法的发展也有影响。这些技术通常模仿生物过程,利用反馈回路来提高其性能。例如,机器学习模型可能根据训练期间所犯的错误调整其参数,体现了负反馈控制系统的原则,以优化其预测并提高准确性。总之,负反馈控制系统是自然和工程系统的基石。它维持稳定、适应变化并确保最佳性能的能力突显了它在各个领域的重要性。无论是在我们家中的气候控制、生理功能的调节,还是在先进技术应用的背景下,负反馈控制系统的原则贯穿于我们的生活。随着我们不断探索和创新,从这些系统中学到的经验无疑将为未来科技和科学的进步提供启示,为我们面临的挑战铺平更具韧性和高效解决方案的道路。