thylakoid

简明释义

[ˈθaɪləkɔɪd][ˈθaɪləˌkɔɪd]

n. (植物)类囊体(植物叶绿体中的蛋白质和脂肪膜皮)

英英释义

A thylakoid is a membrane-bound compartment inside chloroplasts and cyanobacteria that is the site of the light-dependent reactions of photosynthesis.

类囊体是叶绿体和蓝藻内的膜结合腔室,是光合作用中光依赖反应的发生地点。

单词用法

thylakoid membrane

类囊体膜

thylakoid lumen

类囊体腔

thylakoid stack

类囊体堆叠

thylakoid system

类囊体系统

light-dependent reactions of thylakoids

类囊体的光依赖反应

thylakoid-associated proteins

与类囊体相关的蛋白质

thylakoid membrane transport

类囊体膜运输

thylakoid electron transport chain

类囊体电子传递链

同义词

chloroplast membrane

叶绿体膜

Thylakoids are the site of photosynthesis in chloroplasts.

类囊体是叶绿体中光合作用的场所。

lamella

薄层

The lamellae of thylakoids contain chlorophyll, which captures light energy.

类囊体的薄层含有叶绿素,捕获光能。

反义词

stroma

基质

The stroma is the fluid-filled space surrounding the thylakoids in chloroplasts.

基质是叶绿体中围绕类囊体的充满液体的空间。

cytosol

细胞质液

Cytosol is the liquid found inside cells, distinct from the organelles like thylakoids.

细胞质液是存在于细胞内的液体,与像类囊体这样的细胞器不同。

例句

1.Different solubilizers were used to study the distribution of photosystem I complex on the thylakoid membrane and different concentration of separation gel was used for PSI DOC-PAGE.

苗叶片为试材,提取其类囊体膜并利用不同增溶剂研究pSI蛋白复合物的分布以及不同凝胶浓度的DOC - PAGE分离特性。

2.There were not obvious differences on the polypeptide compositions of thylakoid membrane.

但类囊体膜的多肽组分并不存在明显的差异。

3.The decreasing of thylakoid membrane electron transport activities in sharp fall phase were significantly higher than that of active photosynthetic duration under strong illumination stress.

强光逆境下,速降期类囊体电子传递活性受抑制程度比高值持续期明显。

4.Besides, chlorophyll content, soluble protein, thylakoid membrane lipids fatty acid instauration and activity of Violaxanthin de-epoxidase(VDE)were all decreased with the progress of senescence.

叶绿素,可溶性蛋白,类囊体膜脂脂肪酸不饱和度和紫黄质脱环氧化酶(VDE)蛋白量在衰老过程中逐渐下降。

5.It was persumed that the protein FDR3 and FDR4 might be the components in the protein transport channel on the thylakoid membrane.

猜测FDR3蛋白和FDR4蛋白可能是类囊体膜上的蛋白转运通道中的元件。

6.At yellow green fruit stage the thylakoid system was disintegrated and replaced by few non chlorophyllous single thylakoids, with accumulation of large osmiophilic plastoglobules.

在黄绿色果实时期叶绿体类囊体系统解体,代之以少数非叶绿素的单个类囊体和积累大的嗜锇的质体小球。

7.The thylakoid 类囊体 structure is essential for the light-dependent reactions of photosynthesis.

类囊体 类囊体 结构对于光依赖的光合作用反应至关重要。

8.The arrangement of thylakoid 类囊体 stacks is known as granum.

类囊体 类囊体 堆叠的排列称为颗粒。

9.In plants, the thylakoid 类囊体 membranes contain chlorophyll, which is vital for absorbing sunlight.

在植物中,类囊体 类囊体 膜含有叶绿素,这对于吸收阳光至关重要。

10.Light energy is captured by pigments located within the thylakoid 类囊体 membranes.

光能被位于类囊体 类囊体 膜内的色素捕获。

11.The process of photosynthesis occurs in the thylakoid 类囊体 membranes of chloroplasts.

光合作用发生在叶绿体的类囊体 类囊体 膜上。

作文

In the world of biology, understanding the intricate structures and processes that sustain life is crucial. One such structure is the thylakoid, which plays a pivotal role in photosynthesis, the process by which plants convert light energy into chemical energy. The thylakoid is a membrane-bound compartment inside chloroplasts, the organelles responsible for photosynthesis in plant cells. These compartments are organized into stacks known as grana, which resemble coins stacked on top of one another. This unique structure maximizes the surface area available for light absorption, allowing plants to efficiently harness sunlight. Photosynthesis occurs in two main stages: the light-dependent reactions and the light-independent reactions, also known as the Calvin cycle. The light-dependent reactions take place within the thylakoid membranes, where sunlight is absorbed by chlorophyll and other pigments. This energy excites electrons, which are then transferred through a series of proteins known as the electron transport chain. As the electrons move through this chain, they release energy, which is used to pump hydrogen ions into the thylakoid lumen, creating a concentration gradient. This gradient drives the synthesis of ATP (adenosine triphosphate) and NADPH (nicotinamide adenine dinucleotide phosphate), two essential molecules that store energy and reducing power for the next stage of photosynthesis.The structure of the thylakoid is not only important for its function but also for its efficiency. The arrangement of the thylakoid membranes allows for optimal light capture and energy conversion. Additionally, the presence of various pigments, including chlorophyll a, chlorophyll b, and carotenoids, enables plants to absorb different wavelengths of light, making them more adaptable to their environments. This adaptability is crucial for survival, especially in varying light conditions found in nature.In the light-independent reactions, the ATP and NADPH produced in the thylakoid are utilized in the Calvin cycle, which occurs in the stroma of the chloroplast. Here, carbon dioxide is fixed into organic molecules, ultimately leading to the production of glucose, which serves as an energy source for the plant and, indirectly, for all organisms that rely on plants for food.The significance of the thylakoid extends beyond just plant life. Understanding how these structures function has implications for renewable energy research, particularly in the development of artificial photosynthesis systems. By mimicking the natural processes that occur within the thylakoid, scientists aim to create sustainable methods for energy production that could help address global energy challenges.In conclusion, the thylakoid is a remarkable structure that is essential for the process of photosynthesis. Its role in capturing light energy and converting it into chemical energy highlights the beauty and complexity of biological systems. As we continue to explore the functions of the thylakoid and its implications for science and technology, we gain valuable insights into the fundamental processes that sustain life on Earth. The study of the thylakoid not only enhances our understanding of plant biology but also opens new avenues for innovation in energy production and sustainability.

在生物学的世界中,理解支撑生命的复杂结构和过程至关重要。其中一个结构是类囊体,它在光合作用中发挥着关键作用,光合作用是植物将光能转化为化学能的过程。类囊体是位于叶绿体内部的膜结合腔室,叶绿体是植物细胞中负责光合作用的细胞器。这些腔室被组织成称为基粒的堆叠,形状类似于重叠的硬币。这种独特的结构最大化了可用于光吸收的表面积,使植物能够有效地利用阳光。光合作用分为两个主要阶段:光反应和光独立反应,也称为卡尔文循环。光反应发生在类囊体膜内,阳光被叶绿素和其他色素吸收。这种能量激发电子,然后通过一系列称为电子传递链的蛋白质转移。当电子在这个链中移动时,它们释放出能量,这些能量被用来将氢离子泵入类囊体腔室,从而形成浓度梯度。这个梯度驱动ATP(腺苷三磷酸)和NADPH(烟酰胺腺嘌呤二核苷酸磷酸)的合成,这两种分子储存能量和还原力,为光合作用的下一个阶段提供支持。类囊体的结构不仅对其功能重要,而且对其效率也至关重要。类囊体膜的排列使得光捕获和能量转换达到最佳。此外,各种色素的存在,包括叶绿素a、叶绿素b和类胡萝卜素,使植物能够吸收不同波长的光,使它们在环境中更具适应性。这种适应性对于生存至关重要,尤其是在自然界中变化多端的光照条件下。在光独立反应中,类囊体中产生的ATP和NADPH在卡尔文循环中被利用,该循环发生在叶绿体的基质中。在这里,二氧化碳被固定为有机分子,最终导致葡萄糖的生成,葡萄糖作为植物的能量来源,并间接为所有依赖植物作为食物的生物提供能量。类囊体的重要性不仅限于植物生命。了解这些结构如何运作对可再生能源研究具有重要意义,特别是在人工光合作用系统的开发方面。通过模仿在类囊体内发生的自然过程,科学家们旨在创造可持续的能源生产方法,以帮助解决全球能源挑战。总之,类囊体是一个非凡的结构,对于光合作用的过程至关重要。它在捕获光能和将其转化为化学能方面的作用突显了生物系统的美丽和复杂性。随着我们继续探索类囊体的功能及其对科学和技术的影响,我们获得了对维持地球生命的基本过程的宝贵见解。对类囊体的研究不仅增强了我们对植物生物学的理解,还为能源生产和可持续性创新开辟了新的途径。