mean transverse distance
简明释义
平均横向距离
英英释义
例句
1.By analyzing the mean transverse distance 平均横向距离 of different species, ecologists can better understand habitat fragmentation.
通过分析不同物种的mean transverse distance 平均横向距离,生态学家可以更好地理解栖息地的破碎化。
2.The mean transverse distance 平均横向距离 is crucial for determining the effectiveness of the new transportation system.
对于确定新交通系统的有效性,mean transverse distance 平均横向距离至关重要。
3.In the study of urban planning, the mean transverse distance 平均横向距离 between residential areas helps in understanding accessibility.
在城市规划研究中,住宅区之间的mean transverse distance 平均横向距离有助于理解可达性。
4.To improve the accuracy of the model, we need to refine the mean transverse distance 平均横向距离 used in our calculations.
为了提高模型的准确性,我们需要完善计算中使用的mean transverse distance 平均横向距离。
5.The researchers calculated the mean transverse distance 平均横向距离 of the particles in the sample to assess their distribution.
研究人员计算了样本中粒子的mean transverse distance 平均横向距离以评估它们的分布。
作文
In the field of physics and engineering, understanding various measurements and their implications is crucial for designing effective systems. One such measurement is the mean transverse distance, which plays a significant role in analyzing the behavior of particles or objects moving in a particular medium. The mean transverse distance refers to the average distance that a particle travels in a direction perpendicular to its initial motion before it undergoes a scattering event. This concept is particularly important in fields such as nuclear physics, materials science, and even in medical applications like radiation therapy.To illustrate the importance of mean transverse distance, consider the example of charged particles passing through a material. When these particles collide with atoms in the material, they can scatter in different directions. The mean transverse distance provides insight into how far, on average, these particles will travel sideways before they interact with another atom. This measurement helps scientists and engineers determine the effectiveness of shielding materials in protecting against radiation or understanding the behavior of particles in a collider experiment.Moreover, the mean transverse distance is not just a theoretical concept; it has practical applications in various technologies. For instance, in the design of particle detectors, engineers must account for the mean transverse distance to optimize the detection efficiency of the device. By knowing how far particles are likely to scatter, they can arrange the detector components to maximize the likelihood of capturing the particles' paths.In addition to its applications in physics, the mean transverse distance also finds relevance in environmental studies. For example, when analyzing the dispersion of pollutants in the atmosphere or water bodies, researchers can use the mean transverse distance to model how contaminants spread over time. This information is vital for developing strategies to mitigate pollution and protect ecosystems.Furthermore, the mean transverse distance can also be applied in medical imaging techniques, such as positron emission tomography (PET). In PET scans, radioactive tracers are introduced into the body, and their behavior is monitored. Understanding the mean transverse distance of emitted particles helps radiologists interpret the images more accurately, leading to better diagnoses and treatment plans.In summary, the mean transverse distance is a fundamental measurement that has far-reaching implications across various scientific disciplines. Its ability to quantify the average sideways travel of particles before scattering makes it an essential tool for researchers and engineers alike. Whether in the context of particle physics, environmental science, or medical technology, the mean transverse distance serves as a critical parameter that aids in understanding complex systems and improving practical applications. As we continue to explore the intricacies of the natural world, the significance of such measurements will only grow, highlighting the interconnectedness of different scientific fields and the importance of precise calculations in advancing our knowledge and technology.
在物理学和工程学领域,理解各种测量及其影响对于设计有效的系统至关重要。其中一个重要的测量是平均横向距离,它在分析粒子或物体在特定介质中运动行为时发挥着重要作用。平均横向距离指的是粒子在初始运动方向上垂直的方向上旅行的平均距离,在经历散射事件之前。这一概念在核物理、材料科学以及医疗应用(如放射治疗)等领域尤为重要。为了说明平均横向距离的重要性,可以考虑带电粒子穿过材料的例子。当这些粒子与材料中的原子发生碰撞时,它们可能会向不同方向散射。平均横向距离提供了对这些粒子在与另一原子相互作用之前,平均会向侧面移动多远的洞察。这一测量帮助科学家和工程师确定屏蔽材料在防护辐射方面的有效性,或理解粒子在对撞机实验中的行为。此外,平均横向距离不仅仅是一个理论概念;它在各种技术中也有实际应用。例如,在粒子探测器的设计中,工程师必须考虑平均横向距离以优化设备的检测效率。通过了解粒子可能散射的距离,他们可以安排探测器组件,以最大化捕获粒子路径的可能性。除了在物理学中的应用外,平均横向距离在环境研究中也具有相关性。例如,在分析大气或水体中污染物的扩散时,研究人员可以使用平均横向距离来模拟污染物随时间的传播。这些信息对于制定减轻污染和保护生态系统的策略至关重要。此外,平均横向距离还可以应用于医学成像技术,如正电子发射断层扫描(PET)。在PET扫描中,将放射性示踪剂引入体内,并监测其行为。了解发射粒子的平均横向距离有助于放射科医生更准确地解读图像,从而制定更好的诊断和治疗方案。总之,平均横向距离是一项基础测量,在各个科学学科中具有深远的意义。它能够量化粒子在散射前的平均侧向移动,为研究人员和工程师提供了一种重要工具。无论是在粒子物理学、环境科学还是医疗技术的背景下,平均横向距离都作为一个关键参数,帮助我们理解复杂系统并改善实际应用。随着我们继续探索自然世界的复杂性,这类测量的重要性只会增加,突显出不同科学领域之间的相互联系,以及精确计算在推动我们知识和技术进步中的重要性。
相关单词