mean free error time
简明释义
平均无故障时间
英英释义
Mean free error time refers to the average duration during which a system or process operates without encountering an error or failure. | 平均自由错误时间是指一个系统或过程在不遇到错误或故障的情况下运行的平均持续时间。 |
例句
1.The software update aims to reduce the mean free error time 平均自由误差时间 significantly.
软件更新旨在显著减少平均自由误差时间 mean free error time。
2.To improve system performance, we need to minimize the mean free error time 平均自由误差时间 during our calculations.
为了提高系统性能,我们需要在计算过程中尽量减少平均自由误差时间 mean free error time。
3.In our latest experiment, we calculated the mean free error time 平均自由误差时间 to assess the accuracy of our model.
在我们最新的实验中,我们计算了平均自由误差时间 mean free error time以评估我们模型的准确性。
4.The mean free error time 平均自由误差时间 is crucial for understanding the efficiency of the algorithm used in data processing.
平均自由误差时间 mean free error time对于理解数据处理算法的效率至关重要。
5.Our research indicates that a lower mean free error time 平均自由误差时间 leads to better predictive results.
我们的研究表明,较低的平均自由误差时间 mean free error time会导致更好的预测结果。
作文
In the field of physics and engineering, understanding the concept of mean free error time is crucial for analyzing the behavior of particles in a medium. The term refers to the average time interval between successive errors or collisions that a particle experiences as it moves through a substance. This concept is particularly significant in the study of gases, where molecules are constantly colliding with one another and with the walls of their container. By examining the mean free error time, scientists can gain insights into the dynamics of molecular motion and the properties of gases under various conditions.To illustrate this concept further, let's consider a simple analogy. Imagine a crowded room filled with people. Each person represents a molecule, and as they move around, they occasionally bump into each other. The time it takes for a person to move from one side of the room to the other without colliding with anyone can be likened to the mean free error time. If the room is more crowded, the likelihood of collisions increases, which subsequently decreases the mean free error time. In contrast, if the room is less crowded, individuals can navigate more freely, resulting in a longer mean free error time.The implications of the mean free error time extend beyond just theoretical physics. In practical applications, such as the design of gas pipelines or the development of new materials, engineers must account for how often particles will collide and how that affects the overall efficiency of a system. For instance, in a gas pipeline, a shorter mean free error time could lead to increased friction and energy loss, while a longer mean free error time may allow for smoother flow and reduced energy consumption.Moreover, the mean free error time is not limited to gases; it also applies to liquids and solids, albeit in different contexts. In liquids, for example, the mean free error time can influence viscosity and diffusion rates, while in solids, it can affect conductivity and thermal properties. Understanding how these factors interplay can help scientists and engineers develop better materials and processes.In conclusion, the concept of mean free error time is a fundamental aspect of understanding particle behavior in various states of matter. It serves as a critical parameter in both theoretical studies and practical applications, influencing everything from gas dynamics to material science. By grasping the significance of mean free error time, we can better appreciate the complexities of the physical world and improve our technological advancements accordingly.
在物理和工程领域,理解“平均自由误差时间”的概念对于分析粒子在介质中的行为至关重要。这个术语指的是粒子在穿过物质时经历的连续错误或碰撞之间的平均时间间隔。这个概念在气体研究中尤为重要,因为分子在不断地相互碰撞以及与容器壁碰撞。通过研究平均自由误差时间,科学家可以深入了解分子运动的动态及气体在不同条件下的特性。为了进一步说明这个概念,让我们考虑一个简单的类比。想象一个挤满人的房间。每个人代表一个分子,当他们移动时,偶尔会互相碰撞。一个人从房间的一侧移动到另一侧而不与任何人碰撞所需的时间可以类比为平均自由误差时间。如果房间更拥挤,碰撞的可能性增加,这会导致平均自由误差时间缩短。相反,如果房间不那么拥挤,个体可以更自由地移动,从而导致更长的平均自由误差时间。平均自由误差时间的影响不仅限于理论物理。在实际应用中,例如气体管道的设计或新材料的开发,工程师必须考虑粒子碰撞的频率以及这如何影响系统的整体效率。例如,在气体管道中,较短的平均自由误差时间可能导致摩擦和能量损失增加,而较长的平均自由误差时间则可能允许更顺畅的流动和减少的能量消耗。此外,平均自由误差时间不仅限于气体;它在液体和固体中也适用,尽管在不同的背景下。在液体中,例如,平均自由误差时间可以影响粘度和扩散速率,而在固体中,它可以影响导电性和热特性。理解这些因素之间的相互作用可以帮助科学家和工程师开发更好的材料和工艺。总之,平均自由误差时间的概念是理解各种物质状态下粒子行为的基本方面。它作为一个关键参数,在理论研究和实际应用中都发挥着重要作用,影响着从气体动力学到材料科学的一切。通过掌握平均自由误差时间的重要性,我们可以更好地欣赏物理世界的复杂性,并相应地改善我们的技术进步。