maximum deviation
简明释义
最大偏差
英英释义
The maximum deviation refers to the largest difference or distance from a central value or mean in a set of data. | 最大偏差是指在一组数据中,与中心值或均值之间的最大差异或距离。 |
例句
1.After analyzing the data, we found that the maximum deviation 最大偏差 was higher than expected.
分析数据后,我们发现最大偏差 最大偏差高于预期。
2.The maximum deviation 最大偏差 allowed for this experiment is 5% to ensure accurate results.
此实验允许的最大偏差 最大偏差为5%,以确保结果准确。
3.During the quality control process, we need to monitor the maximum deviation 最大偏差 of the product dimensions.
在质量控制过程中,我们需要监控产品尺寸的最大偏差 最大偏差。
4.In statistical analysis, the maximum deviation 最大偏差 from the mean can indicate outliers.
在统计分析中,平均值的最大偏差 最大偏差可以指示异常值。
5.The engineer calculated the maximum deviation 最大偏差 in the measurements to ensure the project stays within tolerance limits.
工程师计算了测量中的最大偏差 最大偏差,以确保项目保持在公差范围内。
作文
In the realm of statistics and data analysis, understanding variability is crucial for making informed decisions. One key concept that often arises in this field is maximum deviation, which refers to the largest difference between a data point and a specified reference point, such as the mean or median of a dataset. This measure provides insight into how spread out the values in a dataset are, and it can be particularly useful in identifying outliers that may skew the results of an analysis.For instance, consider a scenario where a teacher is evaluating the test scores of her students. The scores range from 60 to 100, with an average score of 80. If one student scores 50, the maximum deviation from the average would be 30 points (80 - 50). This significant deviation indicates that this student's performance is notably lower than that of their peers. By identifying such deviations, educators can tailor their teaching strategies to better support students who may be struggling.Moreover, maximum deviation is not only applicable in educational settings but also in various fields such as finance, engineering, and healthcare. In finance, for example, investors often look at the maximum deviation of stock prices to assess risk. A stock that shows a large maximum deviation from its average price may be considered more volatile, prompting investors to approach it with caution.In engineering, understanding maximum deviation can be crucial during the design and manufacturing processes. Engineers must ensure that parts fit together correctly, and any maximum deviation from the specified dimensions could lead to failures in functionality. For instance, if the diameter of a pipe is supposed to be 10 cm, but due to manufacturing inconsistencies, it measures 9.5 cm or 10.5 cm, the maximum deviation here is 0.5 cm. Such discrepancies could compromise the integrity of a system, leading to leaks or other malfunctions.In healthcare, monitoring patient vitals can also involve understanding maximum deviation. For example, if a patient’s normal blood pressure is around 120/80 mmHg, but during a check-up, it reads 150/90 mmHg, the maximum deviation indicates a significant change that may require immediate medical attention. Recognizing these deviations early can be critical in preventing serious health issues.In conclusion, the concept of maximum deviation serves as a vital tool across various domains. It helps individuals and organizations identify significant variances from expected norms, thus facilitating more effective decision-making. Whether in education, finance, engineering, or healthcare, recognizing and analyzing maximum deviation can lead to improved outcomes and enhanced understanding of underlying patterns within data. As we continue to accumulate vast amounts of data in our increasingly quantitative world, mastering the interpretation of maximum deviation will undoubtedly remain an essential skill for professionals in all fields.
在统计和数据分析领域,理解变量性对于做出明智的决策至关重要。一个常常出现的关键概念是最大偏差,它指的是数据点与指定参考点(例如数据集的均值或中位数)之间的最大差异。这个度量提供了关于数据集中值分散程度的洞察,特别有助于识别可能扭曲分析结果的异常值。例如,考虑一个场景,一位老师正在评估她学生的考试成绩。成绩范围从60到100,平均分为80。如果一名学生得分为50,那么从平均值的最大偏差将是30分(80 - 50)。这一显著的偏差表明,这名学生的表现明显低于同龄人。通过识别这些偏差,教育工作者可以调整他们的教学策略,以更好地支持可能面临困难的学生。此外,最大偏差不仅适用于教育环境,还广泛应用于金融、工程和医疗等多个领域。例如,在金融领域,投资者通常会关注股票价格的最大偏差以评估风险。显示出较大最大偏差的股票可能被认为更具波动性,促使投资者谨慎对待。在工程学中,理解最大偏差在设计和制造过程中也至关重要。工程师必须确保部件能够正确配合,任何与规定尺寸的最大偏差都可能导致功能失效。例如,如果一根管道的直径应该是10厘米,但由于制造不一致,测得为9.5厘米或10.5厘米,则这里的最大偏差为0.5厘米。这种差异可能会影响系统的完整性,导致泄漏或其他故障。在医疗保健中,监测患者生命体征也可能涉及理解最大偏差。例如,如果患者的正常血压约为120/80 mmHg,但在检查时读数为150/90 mmHg,那么最大偏差表明发生了显著变化,可能需要立即医疗干预。及早识别这些偏差对于防止严重健康问题至关重要。总之,最大偏差的概念在各个领域都是一个重要的工具。它帮助个人和组织识别与预期标准的显著差异,从而促进更有效的决策。无论是在教育、金融、工程还是医疗保健中,识别和分析最大偏差都能带来更好的结果,增强对数据中潜在模式的理解。随着我们在日益量化的世界中积累大量数据,掌握对最大偏差的解读无疑将继续成为各领域专业人士的一项基本技能。
相关单词