maximum blade width to diameter ratio
简明释义
最大叶宽与直径比
英英释义
例句
1.The maximum blade width to diameter ratio 最大刀片宽度与直径比率 is crucial in determining the strength of the blades under high pressure.
在高压下,最大刀片宽度与直径比率 最大刀片宽度与直径比率 对于确定刀片的强度至关重要。
2.The research paper discusses the optimal maximum blade width to diameter ratio 最大刀片宽度与直径比率 for various types of wind turbines.
研究论文讨论了各种类型风力涡轮机的最佳最大刀片宽度与直径比率 最大刀片宽度与直径比率。
3.In our latest design, we achieved a maximum blade width to diameter ratio 最大刀片宽度与直径比率 of 0.4, which improves efficiency significantly.
在我们最新的设计中,我们达到了最大刀片宽度与直径比率 最大刀片宽度与直径比率 0.4,这显著提高了效率。
4.For safety reasons, the maximum blade width to diameter ratio 最大刀片宽度与直径比率 must not exceed 0.5 in this application.
出于安全原因,此应用中的最大刀片宽度与直径比率 最大刀片宽度与直径比率 不得超过0.5。
5.The engineer specified the maximum blade width to diameter ratio 最大刀片宽度与直径比率 for the turbine to ensure optimal performance.
工程师规定了涡轮机的最大刀片宽度与直径比率 最大刀片宽度与直径比率,以确保最佳性能。
作文
In the field of engineering and design, particularly in the manufacturing of blades for various applications, understanding the maximum blade width to diameter ratio is crucial. This ratio plays a significant role in determining the efficiency and performance of blades used in turbines, fans, and other rotating machinery. The maximum blade width to diameter ratio refers to the largest allowable width of the blade in relation to its diameter. A well-optimized ratio can enhance airflow, reduce drag, and improve overall functionality. When designing blades, engineers must consider several factors, including the material properties, intended use, and operational conditions. For instance, in a wind turbine, a larger maximum blade width to diameter ratio might allow for greater energy capture from the wind, but it could also lead to increased stress on the blade structure. Therefore, finding the right balance is essential. One of the key aspects of the maximum blade width to diameter ratio is its impact on aerodynamics. Blades with a wider width can create more lift, but if the width exceeds a certain threshold in relation to the diameter, it can lead to turbulent flow and decreased efficiency. This is why engineers often conduct extensive simulations and tests to determine the optimal ratio for specific applications. Moreover, the maximum blade width to diameter ratio can vary significantly depending on the type of blade being designed. For example, in axial fans, where the goal is to move air efficiently, a different ratio may be preferred compared to that of a centrifugal pump blade, which requires a different aerodynamic profile. Understanding these differences is vital for engineers to create designs that meet performance specifications while ensuring reliability and safety. In addition to performance considerations, the maximum blade width to diameter ratio also influences manufacturing processes. Wider blades may require more complex machining techniques and materials that can withstand higher stresses. This can increase production costs and time, making it necessary for manufacturers to evaluate the economic implications of their designs. Furthermore, as industries evolve and push towards more sustainable practices, the maximum blade width to diameter ratio will likely play an even more significant role. For instance, advancements in materials science may allow for lighter yet stronger blades, enabling designers to experiment with ratios that were previously deemed impractical. This could lead to more efficient machines that consume less energy and have a reduced environmental impact. In conclusion, the maximum blade width to diameter ratio is a critical parameter in the design and optimization of blades across various industries. It affects not only the performance and efficiency of the blades but also their manufacturability and sustainability. Engineers must carefully analyze and test different ratios to achieve the best possible outcomes for their specific applications. As technology continues to advance, the importance of understanding and optimizing this ratio will only grow, paving the way for innovations that can transform the way we harness energy and utilize machinery.
在工程和设计领域,特别是在各种应用的刀片制造中,理解最大刀片宽度与直径比是至关重要的。这个比率在确定用于涡轮机、风扇和其他旋转机械的刀片的效率和性能方面发挥着重要作用。最大刀片宽度与直径比指的是刀片相对于其直径的最大允许宽度。一个经过良好优化的比率可以增强气流、减少阻力并改善整体功能。在设计刀片时,工程师必须考虑多个因素,包括材料特性、预期用途和操作条件。例如,在风力涡轮机中,较大的最大刀片宽度与直径比可能允许从风中捕获更多的能量,但这也可能导致刀片结构承受更大的压力。因此,找到合适的平衡至关重要。最大刀片宽度与直径比的一个关键方面是其对空气动力学的影响。宽度较大的刀片可以产生更多的升力,但如果宽度超过与直径的某个阈值相关的比例,它可能会导致湍流流动和效率降低。这就是为什么工程师通常进行广泛的模拟和测试,以确定特定应用的最佳比率。此外,最大刀片宽度与直径比在不同类型的刀片设计中可能会有显著差异。例如,在轴流风扇中,目标是有效地移动空气,而与离心泵刀片所需的不同空气动力学特征相比,可能更喜欢不同的比率。理解这些差异对于工程师创建符合性能规范同时确保可靠性和安全性设计至关重要。除了性能考虑外,最大刀片宽度与直径比还影响制造过程。较宽的刀片可能需要更复杂的加工技术和能够承受更高压力的材料。这可能会增加生产成本和时间,使得制造商必须评估其设计的经济影响。此外,随着行业的发展并朝着更可持续的实践推进,最大刀片宽度与直径比可能会发挥更重要的作用。例如,材料科学的进步可能允许制造更轻但更强的刀片,使设计师能够尝试以前被认为不切实际的比率。这可能导致更高效的机器,消耗更少的能源,并减少对环境的影响。总之,最大刀片宽度与直径比是设计和优化各行业刀片的关键参数。它不仅影响刀片的性能和效率,还影响其可制造性和可持续性。工程师必须仔细分析和测试不同的比率,以实现特定应用的最佳结果。随着技术的不断进步,理解和优化这一比率的重要性只会增加,为我们利用能源和机器的方式带来变革性的创新。
相关单词