microstructures
简明释义
英[ˈmaɪkrəʊˌstrʌk.tʃəz]美[ˈmaɪkroʊˌstrʌk.tʃərz]
n. 微观结构(microstructure 的复数);[生物]显微结构
英英释义
Microstructures refer to the small-scale structures within a material that can significantly influence its properties and behavior. | 微观结构是指材料内部的小规模结构,这些结构可以显著影响其性质和行为。 |
单词用法
金属微观结构 | |
生物微观结构 | |
纳米结构微观结构 | |
微观结构的表征 | |
材料科学中的微观结构 | |
微观结构与性质 | |
微观结构的制造 | |
在显微镜下观察到的微观结构 |
同义词
反义词
宏观结构 | The study of macrostructures helps in understanding large-scale phenomena. | 宏观结构的研究有助于理解大规模现象。 | |
块体结构 | 块体结构通常在土木工程中进行分析。 |
例句
1.The influence of two abnormal forging processes on the microstructures and tensile properties of TC4 alloy is investigated.
研究了两类锻造工艺对航天用TC 4钛合金异形锻件的显微组织及拉伸性能的影响。
2.At last, based on the characteristics of microstructures, class fied the evolutionary phases of bitumens.
根据沥青显微结构和光性特征划分了沥青的演化阶段。
3.The effect of flux basicity on the microstructures and toughness of SAW deposited metals on pipe line was investigated.
研究了焊剂碱度对管线钢埋弧焊熔敷金属显微组织和韧性的影响。
4.With optimum magnetic intensity and frequency, the weld microstructures were almost fine equiaxed grains and the weld shape was.
当磁感应强度和频率匹配合适时,焊缝成形良好,焊缝组织几乎为细小的等轴晶。
5.Nano materials and microstructures of materials at nano scales are two key regions on the study of material science.
纳米材料及材料的纳米尺度微观结构研究是材料科学的两个重要领域。
6.Compositions and microstructures of a large ZL205A casting were studied.
研究了ZL205 A大型铸件成分和显微组织。
7.The fully lamellar microstructures with different grain size and lamellar spacing were obtained by heat treatment.
通过热处理手段获得可区分晶粒尺度和片层厚度的全片层组织。
8.Understanding the microstructures 微观结构 of concrete can lead to better construction practices.
理解混凝土的微观结构可以导致更好的建筑实践。
9.Researchers are analyzing the microstructures 微观结构 of biological tissues to better understand disease progression.
研究人员正在分析生物组织的微观结构以更好地理解疾病进展。
10.The study of the microstructures 微观结构 in metals can help improve their strength.
对金属中微观结构的研究可以帮助提高其强度。
11.Advanced imaging techniques allow scientists to visualize the microstructures 微观结构 of cells.
先进的成像技术使科学家能够可视化细胞的微观结构。
12.The microstructures 微观结构 of the material dictate its thermal conductivity.
材料的微观结构决定了其热导率。
作文
Microstructures play a pivotal role in the understanding of materials at a fundamental level. In various fields, from engineering to biology, the term microstructures (微观结构) refers to the small-scale features that define the properties and behaviors of materials. These structures can range from the arrangement of atoms in metals to the formation of cells in biological tissues. The study of microstructures (微观结构) is essential for innovating new materials and improving existing ones, making it a key focus area in material science.In material engineering, the microstructures (微观结构) of metals, for instance, determine their strength, ductility, and resistance to corrosion. Engineers manipulate these structures through processes such as heat treatment and alloying to enhance the performance of materials. For example, steel can be transformed into high-strength steel by controlling its microstructures (微观结构), resulting in applications that require exceptional durability, such as in construction and automotive industries.Similarly, in the field of biology, the microstructures (微观结构) of tissues influence how organisms function and respond to their environments. The architecture of cells, including their membranes and organelles, dictates how they interact with one another and perform vital functions. Research into the microstructures (微观结构) of biological materials has led to significant advancements in medical technology, including tissue engineering and regenerative medicine. Understanding these structures enables scientists to develop biomaterials that can mimic natural tissues, paving the way for innovative treatments and therapies.Moreover, the significance of microstructures (微观结构) extends to nanotechnology, where the manipulation of materials at the atomic or molecular level can lead to groundbreaking applications. Nanomaterials exhibit unique properties due to their microstructures (微观结构), which can differ dramatically from their bulk counterparts. This has opened up new avenues in electronics, energy storage, and drug delivery systems, showcasing the importance of understanding and controlling microstructures (微观结构) for technological advancement.One of the challenges in studying microstructures (微观结构) lies in the techniques used to observe and analyze them. Traditional methods like optical microscopy may not provide sufficient resolution to examine microstructures (微观结构) at the nanoscale. Advanced techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have become essential tools for researchers. These methods allow for detailed imaging and characterization of microstructures (微观结构), enabling scientists to correlate structure with properties and performance.In conclusion, the concept of microstructures (微观结构) is integral to multiple disciplines, influencing both the theoretical understanding and practical applications of materials. As technology continues to evolve, the exploration of microstructures (微观结构) will remain crucial in driving innovations across various fields, from improving everyday materials to developing cutting-edge medical treatments. The future of material science and engineering will undoubtedly hinge on our ability to manipulate and understand these tiny yet significant structures, underscoring the importance of continued research and education in this area.
微观结构在理解材料的基本层面上发挥着关键作用。在工程学到生物学的各个领域,术语微观结构(microstructures)指的是定义材料特性和行为的小尺度特征。这些结构可以从金属中原子的排列到生物组织中细胞的形成。研究微观结构(microstructures)对于创新新材料和改善现有材料至关重要,因此成为材料科学的一个关键研究领域。在材料工程中,金属的微观结构(microstructures)决定了它们的强度、延展性和耐腐蚀性。工程师通过热处理和合金化等工艺来操控这些结构,以提高材料的性能。例如,通过控制其微观结构(microstructures),钢可以转变为高强度钢,从而用于需要卓越耐久性的应用,如建筑和汽车工业。同样,在生物学领域,组织的微观结构(microstructures)影响着生物体如何运作以及如何响应环境。细胞的构造,包括它们的膜和细胞器,决定了它们如何相互作用并执行重要功能。对生物材料的微观结构(microstructures)的研究已导致医学技术的重大进展,包括组织工程和再生医学。理解这些结构使科学家能够开发能够模拟自然组织的生物材料,为创新治疗和疗法铺平了道路。此外,微观结构(microstructures)的重要性还扩展到纳米技术,在这里,材料在原子或分子水平上的操控可以导致突破性的应用。纳米材料由于其微观结构(microstructures)表现出独特的特性,这些特性可能与其大块对应物有显著不同。这为电子学、能源存储和药物输送系统开辟了新的途径,展示了理解和控制微观结构(microstructures)在技术进步中的重要性。研究微观结构(microstructures)的一个挑战在于观察和分析它们所使用的技术。传统的方法如光学显微镜可能无法提供足够的分辨率来检查纳米级的微观结构(microstructures)。扫描电子显微镜(SEM)和透射电子显微镜(TEM)等先进技术已成为研究人员的基本工具。这些方法允许对微观结构(microstructures)进行详细成像和表征,使科学家能够将结构与特性和性能相关联。总之,微观结构(microstructures)的概念对于多个学科至关重要,影响着材料的理论理解和实际应用。随着技术的不断发展,对微观结构(microstructures)的探索将继续在推动各个领域的创新中发挥关键作用,从改善日常材料到开发尖端医学治疗。材料科学和工程的未来无疑将取决于我们操控和理解这些微小而重要的结构的能力,这突显了在这一领域继续研究和教育的重要性。