magnetisierungskenn linie

简明释义

磁化曲线

英英释义

The magnetization characteristic curve, often referred to as the magnetization curve or magnetization line, represents the relationship between the magnetic field strength and the magnetization of a material.

磁化特性曲线,通常称为磁化曲线或磁化线,表示材料的磁场强度与磁化之间的关系。

例句

1.In order to optimize the motor design, we need to refer to the magnetisierungskennlinie of the core material.

为了优化电机设计,我们需要参考核心材料的磁化特性曲线

2.Understanding the magnetisierungskennlinie is crucial for designing efficient transformers.

理解磁化特性曲线对于设计高效的变压器至关重要。

3.The engineer analyzed the magnetisierungskennlinie to determine the material's magnetic properties.

工程师分析了磁化特性曲线以确定材料的磁性特性。

4.By plotting the magnetisierungskennlinie, we can visualize how the material reacts to different magnetic fields.

通过绘制磁化特性曲线,我们可以直观地看到材料如何对不同的磁场作出反应。

5.The magnetisierungskennlinie indicates the saturation point of the magnetic material.

磁化特性曲线显示了磁性材料的饱和点。

作文

The concept of magnetisierungskenn linie refers to the magnetization curve of a material, which is an essential aspect in the field of magnetism and electromagnetic engineering. Understanding this curve is crucial for engineers and scientists who work with magnetic materials, as it provides insights into how materials respond to external magnetic fields. The magnetisierungskenn linie essentially illustrates the relationship between the magnetic field strength (H) and the magnetic flux density (B) in a given material. In practical terms, when a magnetic material is subjected to an external magnetic field, its internal structure begins to align with the field. This alignment leads to an increase in magnetization, which is represented graphically by the magnetisierungskenn linie. Typically, this curve starts at the origin, where there is no magnetic field applied, and as the field strength increases, the magnetization of the material also increases. However, this relationship is not linear; it can exhibit saturation, where further increases in the magnetic field do not significantly increase the magnetization. The shape of the magnetisierungskenn linie can vary significantly depending on the type of material being studied. For example, ferromagnetic materials, such as iron, show a steep initial slope in their curves due to their high permeability. On the other hand, paramagnetic materials have a much gentler slope, indicating that they are less responsive to magnetic fields. Understanding these differences is vital for selecting the right materials for specific applications, whether in electronics, telecommunications, or industrial machinery.Moreover, the magnetisierungskenn linie can also provide information about hysteresis, which is the lag between the change in magnetization and the change in the magnetic field. Hysteresis is particularly important in applications where magnetic materials are cycled through different magnetic states, such as in transformers and inductors. The area within the hysteresis loop on the magnetisierungskenn linie represents energy loss in the material during each cycle, which is a critical factor in efficiency calculations for electrical devices. In conclusion, the magnetisierungskenn linie is a fundamental concept in understanding how magnetic materials behave under various conditions. It not only helps in the theoretical study of magnetism but also has practical implications in designing and optimizing electronic devices. By mastering the principles behind the magnetisierungskenn linie, engineers and scientists can better harness the power of magnetism in technology, ultimately leading to advancements in numerous fields. As we continue to explore the properties of magnetic materials, the significance of the magnetisierungskenn linie will undoubtedly remain a critical focus for innovation and development in the future.

magnetisierungskenn linie”这个概念指的是材料的磁化曲线,这是磁学和电磁工程领域中的一个重要方面。理解这一曲线对于从事磁性材料工作的工程师和科学家至关重要,因为它提供了材料如何响应外部磁场的见解。“magnetisierungskenn linie”基本上描绘了给定材料中磁场强度(H)与磁通密度(B)之间的关系。在实际应用中,当磁性材料受到外部磁场作用时,其内部结构开始与磁场对齐。这种对齐导致磁化的增加,图形上由“magnetisierungskenn linie”表示。通常,这条曲线从原点开始,在没有施加磁场的情况下,随着磁场强度的增加,材料的磁化也增加。然而,这种关系并不是线性的;它可能表现出饱和现象,即进一步增加磁场并不会显著增加磁化。“magnetisierungskenn linie”的形状可能因所研究材料的类型而异。例如,铁等铁磁材料在其曲线中表现出陡峭的初始斜率,这是由于其高导磁率所致。另一方面,顺磁材料的斜率较温和,表明它们对磁场的反应较小。理解这些差异对于选择特定应用的合适材料至关重要,无论是在电子、通信还是工业机械中。此外,“magnetisierungskenn linie”还可以提供关于滞后的信息,即磁化变化与磁场变化之间的滞后。在需要循环通过不同磁态的应用中,滞后尤为重要,例如在变压器和电感器中。在“magnetisierungskenn linie”的滞回环内的面积代表材料在每个循环中的能量损失,这在电气设备的效率计算中是一个关键因素。总之,“magnetisierungskenn linie”是理解磁性材料在各种条件下行为的基本概念。它不仅有助于磁学的理论研究,还在设计和优化电子设备中具有实际意义。通过掌握“magnetisierungskenn linie”背后的原理,工程师和科学家可以更好地利用磁性在技术中的力量,从而最终推动多个领域的进步。随着我们继续探索磁性材料的特性,“magnetisierungskenn linie”的重要性无疑将继续成为未来创新和发展的关键焦点。