addend
简明释义
n. 加数;附加物
英英释义
An addend is a number that is added to another number in an arithmetic operation. | 加数是指在算术运算中与另一个数字相加的数字。 |
单词用法
addend的和 | |
识别addend | |
两个addend | |
多个addend |
同义词
加数 | 在表达式5 + 3中,5和3都是加数。 |
反义词
被减数 | In the equation, the subtrahend is the number being subtracted. | 在这个方程中,被减数是正在被减去的数字。 | |
减少 | The diminution of resources led to a decrease in productivity. | 资源的减少导致了生产力的下降。 |
例句
1.Thus, the augend and the addend must each be small enough to fit within one memory location.
由此可见,加数和被加数都应足够小,以便能够合适地装入一个存储单元。
2.Addend and BeiJiaShu as input, and the device for output with binary for half a gal device.
加法器是产生数的和的装置。加数和被加数为输入,和数与进位为输出的装置为半加器。
3.Addend and the summand input, and digital and carry the output device is a half adder.
加法器是产生数的和的装置。加数和被加数为输入,和数与进位为输出的装置为半加器。
4.In Problems 2 &3 , we know the sum and one addend . So we use subtraction to get the other addend .
第(2)、(3)题是已知两个数的和与其中的一个加数,求另一个加数,用减法计算。
5.During these steps, some digits are selected for specific roles (e. g., first addend) in the addition operation, while the others are held in working memory, but not used in the current operation.
在这些心算步骤中,每个时刻只有一些数字被特殊地选择用于加法运算的被加数,而其他的数字则仅仅保存在工作记忆中并不用于当前操作。
6.During these steps, some digits are selected for specific roles (e. g., first addend) in the addition operation, while the others are held in working memory, but not used in the current operation.
在这些心算步骤中,每个时刻只有一些数字被特殊地选择用于加法运算的被加数,而其他的数字则仅仅保存在工作记忆中并不用于当前操作。
7.In the equation 5 + 3 = 8, both 5 and 3 are addends (加数).
在方程 5 + 3 = 8 中,5 和 3 都是 加数 (addends).
8.To find the total cost, we need to list all the addends (加数) in the invoice.
要找到总成本,我们需要列出发票中的所有 加数 (addends)。
9.When you sum the numbers 10 and 20, you are adding two addends (加数) together.
当你将数字 10 和 20 相加时,你是在将两个 加数 (addends) 相加。
10.The teacher explained that in addition, every number is an addend (加数).
老师解释说,在加法中,每个数字都是一个 加数 (addend)。
11.In a budget, each expense is an addend (加数) that contributes to the total.
在预算中,每一项支出都是一个 加数 (addend),它对总额产生贡献。
作文
In mathematics, the concept of an addend (加数) is fundamental to understanding how numbers interact with one another. An addend is a number that is added to another number in an addition operation. For instance, in the equation 2 + 3 = 5, both 2 and 3 are addends (加数), and their sum is 5. Understanding the role of addends (加数) is crucial not only in basic arithmetic but also in more advanced mathematical concepts. When we think about addition, we often visualize it as combining quantities. Each addend (加数) represents a distinct quantity that contributes to the total. This idea can be applied in various real-life situations. For example, when planning a party, you might consider the number of guests you are inviting and the amount of food you need to prepare. If you invite 10 friends and your family consists of 4 members, the total number of people at the party can be represented as 10 + 4 = 14, where both 10 and 4 are addends (加数). Moreover, the concept of addends (加数) extends beyond simple addition. In algebra, we often encounter expressions where multiple addends (加数) come into play. For instance, in the expression x + y + z, x, y, and z are all addends (加数) that can represent variables or constants. Understanding how to manipulate these addends (加数) is essential for solving equations and simplifying expressions. Additionally, the importance of addends (加数) can be seen in statistical analysis. When calculating the mean of a set of numbers, we add all the values together, which involves identifying each value as an addend (加数). For example, if we have the numbers 4, 8, 6, and 10, we would calculate the mean by first adding them: 4 + 8 + 6 + 10 = 28. Here, 4, 8, 6, and 10 are all addends (加数) contributing to the total sum of 28. Furthermore, understanding addends (加数) helps in developing critical thinking skills. When faced with complex problems, breaking them down into smaller parts often involves identifying the relevant addends (加数). This approach not only simplifies the problem but also enhances our ability to analyze different components systematically. In conclusion, the term addend (加数) may seem simple, but it plays a vital role in various mathematical and real-world contexts. Whether we are adding numbers in basic arithmetic or working with complex algebraic expressions, recognizing and understanding addends (加数) is essential. By mastering this concept, we can improve our mathematical skills and apply these principles to everyday situations, making us more proficient problem solvers. Therefore, the next time you encounter an addition problem, remember the significance of each addend (加数) and how they contribute to the overall solution.
在数学中,addend(加数)的概念对于理解数字之间的相互作用至关重要。addend是一个在加法运算中被添加到另一个数字上的数字。例如,在方程2 + 3 = 5中,2和3都是addends(加数),它们的和为5。理解addends(加数)的角色不仅对基础算术至关重要,而且对更高级的数学概念也同样重要。当我们思考加法时,我们常常将其视为数量的结合。每个addend(加数)代表一个不同的数量,对总和有所贡献。这一思想可以应用于各种现实生活的情境。例如,在策划聚会时,您可能会考虑邀请的客人数量和需要准备的食物量。如果您邀请了10个朋友,而您的家庭成员有4个,那么聚会上的总人数可以表示为10 + 4 = 14,其中10和4都是addends(加数)。此外,addends(加数)的概念超越了简单的加法。在代数中,我们经常遇到多个addends(加数)的表达式。例如,在表达式x + y + z中,x、y和z都是addends(加数),可以表示变量或常量。理解如何操作这些addends(加数)对于解方程和简化表达式至关重要。此外,addends(加数)的重要性还体现在统计分析中。当计算一组数字的平均值时,我们会将所有数值加在一起,这涉及到识别每个值作为addend(加数)。例如,如果我们有数字4、8、6和10,我们将通过首先将它们相加来计算平均值:4 + 8 + 6 + 10 = 28。在这里,4、8、6和10都是贡献总和28的addends(加数)。此外,理解addends(加数)有助于培养批判性思维技能。当面对复杂问题时,将其分解为较小部分通常涉及识别相关的addends(加数)。这种方法不仅简化了问题,还增强了我们系统分析不同组成部分的能力。总之,术语addend(加数)可能看似简单,但它在各种数学和现实世界的背景中发挥着重要作用。无论我们是在基础算术中加数字,还是在处理复杂的代数表达式,识别和理解addends(加数)都是必不可少的。通过掌握这一概念,我们可以提高我们的数学技能,并将这些原则应用于日常情况,使我们成为更高效的问题解决者。因此,下次当您遇到加法问题时,请记住每个addend(加数)的重要性以及它们如何对整体解决方案做出贡献。