longitudinal magnetization

简明释义

纵向磁化

英英释义

Longitudinal magnetization refers to the component of magnetization that is aligned parallel to the direction of an external magnetic field.

纵向磁化是指与外部磁场方向平行对齐的磁化分量。

例句

1.The process of returning to longitudinal magnetization 纵向磁化 after a pulse is known as T1 relaxation.

在脉冲后返回到纵向磁化的过程称为T1松弛。

2.In MRI, the recovery of longitudinal magnetization 纵向磁化 is crucial for obtaining high-quality images.

在MRI中,纵向磁化的恢复对于获得高质量图像至关重要。

3.The strength of the longitudinal magnetization 纵向磁化 can affect the overall signal-to-noise ratio in an MRI scan.

在MRI扫描中,纵向磁化的强度可以影响整体信噪比。

4.In NMR experiments, measuring the longitudinal magnetization 纵向磁化 helps in understanding molecular dynamics.

在NMR实验中,测量纵向磁化有助于理解分子动力学。

5.During the scan, the technician monitored the longitudinal magnetization 纵向磁化 to optimize the imaging parameters.

在扫描过程中,技术人员监测纵向磁化以优化成像参数。

作文

In the realm of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR), the concept of longitudinal magnetization plays a crucial role in understanding how these technologies work. Longitudinal magnetization refers to the component of magnetization that is aligned along the direction of the magnetic field. This alignment occurs when spins of atomic nuclei, such as hydrogen in water molecules, are subjected to an external magnetic field. The behavior of these spins under the influence of the magnetic field is fundamental to the imaging processes used in medical diagnostics.To grasp the significance of longitudinal magnetization, one must first understand the basic principles of magnetism in NMR. When a sample is placed in a magnetic field, the magnetic moments of the atomic nuclei tend to align with the field. This alignment creates a net magnetization vector, which can be decomposed into two components: longitudinal and transverse. The longitudinal magnetization is the part that points in the same direction as the magnetic field, while the transverse magnetization lies perpendicular to it.The dynamics of longitudinal magnetization are particularly important during the relaxation processes known as T1 relaxation. After a radiofrequency pulse is applied, the spins are momentarily disturbed from their equilibrium state. They begin to return to their original alignment with the magnetic field, a process that involves the recovery of longitudinal magnetization. The time it takes for this recovery to occur varies depending on the environment of the spins, which is why different tissues in the body exhibit varying T1 relaxation times in MRI scans.Understanding longitudinal magnetization is essential for optimizing MRI techniques. For instance, by manipulating the timing of radiofrequency pulses and the intervals between them, radiologists can enhance the contrast of images based on the differences in T1 relaxation times among various tissues. This capability allows for better visualization of anatomical structures and can aid in the diagnosis of numerous medical conditions.Moreover, the concept of longitudinal magnetization extends beyond just MRI. It also has applications in fields such as quantum computing and material science, where the manipulation of spin states is crucial. In quantum computing, for example, the ability to control the longitudinal magnetization of qubits can lead to more efficient information processing and storage.In conclusion, longitudinal magnetization is a fundamental concept in magnetic resonance technologies, influencing both the theoretical and practical aspects of imaging and spin manipulation. By comprehending this principle, one can appreciate the intricate workings of MRI and NMR, as well as their wide-ranging applications in science and medicine. As research continues to advance, further exploration of longitudinal magnetization may unlock new possibilities in both diagnostic imaging and quantum technologies, ultimately enhancing our understanding of the physical world around us.

在磁共振成像(MRI)和核磁共振(NMR)的领域中,纵向磁化的概念在理解这些技术的工作原理方面起着至关重要的作用。纵向磁化是指沿着磁场方向对齐的磁化分量。当原子核的自旋(例如水分子中的氢)受到外部磁场的作用时,这种对齐就会发生。这些自旋在磁场影响下的行为是医学诊断中使用的成像过程的基础。要理解纵向磁化的重要性,首先必须了解NMR中磁性的基本原理。当样品置于磁场中时,原子核的磁矩倾向于与磁场对齐。这种对齐形成了一个净磁化矢量,可以分解为两个分量:纵向和横向。纵向磁化是指指向与磁场相同方向的部分,而横向磁化则垂直于它。纵向磁化的动态过程在被称为T1弛豫的放松过程中尤为重要。在施加射频脉冲后,自旋会暂时从其平衡状态中被扰动。它们开始恢复到与磁场的原始对齐状态,这一过程涉及纵向磁化的恢复。恢复所需的时间因自旋的环境而异,这就是为什么身体中不同组织在MRI扫描中表现出不同的T1弛豫时间。理解纵向磁化对于优化MRI技术至关重要。例如,通过操控射频脉冲的时机和它们之间的间隔,放射科医生可以根据各种组织之间T1弛豫时间的差异增强图像的对比度。这种能力使得更好地可视化解剖结构成为可能,并有助于诊断多种医疗状况。此外,纵向磁化的概念不仅限于MRI。它在量子计算和材料科学等领域也有应用,在这些领域中,自旋状态的操控至关重要。例如,在量子计算中,控制量子位的纵向磁化能力可以提高信息处理和存储的效率。总之,纵向磁化是磁共振技术中的一个基本概念,影响着成像和自旋操控的理论和实践方面。通过理解这一原理,人们可以欣赏到MRI和NMR复杂的工作机制,以及它们在科学和医学中的广泛应用。随着研究的不断进展,对纵向磁化的进一步探索可能会开启诊断成像和量子技术的新可能性,最终增强我们对周围物理世界的理解。

相关单词

longitudinal

longitudinal详解:怎么读、什么意思、用法

magnetization

magnetization详解:怎么读、什么意思、用法