magnon
简明释义
n. 磁子;[物] 磁振子
英英释义
A magnon is a collective excitation of the electron spin structure in a material, which behaves like a quasiparticle in the context of magnetism. | Magnon是材料中电子自旋结构的集体激发,在磁性背景下表现得像一种准粒子。 |
单词用法
自旋波磁激子 | |
磁激子色散 | |
磁激子能量 | |
磁激子动力学 |
同义词
反义词
自旋子 | Spinons are excitations that carry spin information in a magnetic system. | 自旋子是携带磁性系统中自旋信息的激发态。 | |
声子 | Phonons are quantized modes of vibrations occurring in a rigid crystal lattice. | 声子是发生在刚性晶格中的量子化振动模式。 |
例句
我也告诉过马侬了。
2.Cro-Magnon man, who lived in Europe 20, 000 to 30, 000 years ago, had the biggest brains of any human species.
2万到3万年前在欧洲生活的克鲁马努人,有人类最大的大脑。
3.The Thenardier catastrophe involved the catastrophe of Magnon.
德纳第的灾难引起了马侬姑娘的灾难。
4.This woman in turn transmitted the note to another woman of her acquaintance, a certain Magnon, who was strongly suspected by the police, though not yet arrested.
这姑娘又把那字条转到一个她认识的叫作马侬的女人那里,后者已受到警察的密切注意,但还未被捕。
5.With a more progressive business model, we suspect consumers decreasingly view Merrill Lynch as a relic from the Cro-Magnon era of financial services.
由于采取了更进取的商业模式,我们猜测消费者会逐渐不再将美林视作金融业克罗马农时代(译者注:远古时代)的遗物。
6.A magnon-phonon interaction model is applied to two - dimensional insulating ferromagnets.
在二维正方绝缘铁磁系统基础上建立了一个磁振子声子相互作用模型。
7.The study of magnons 磁子 helps us understand the thermal properties of spin waves.
对magnons 磁子的研究帮助我们理解自旋波的热特性。
8.Researchers are investigating how magnons 磁子 can be used in quantum computing.
研究人员正在调查如何在量子计算中使用magnons 磁子。
9.In ferromagnetic materials, a magnon 磁子 can be created when the magnetic order is disturbed.
在铁磁材料中,当磁序被扰动时,可以产生一个magnon 磁子。
10.The interaction between magnons 磁子 and phonons is crucial for understanding thermal conductivity in materials.
magnons 磁子与声子的相互作用对于理解材料中的热导率至关重要。
11.A magnon 磁子 can be thought of as a quantized spin wave in a magnetic system.
可以将magnon 磁子视为磁系统中的量子化自旋波。
作文
In the realm of condensed matter physics, the study of magnetic phenomena is a vast and intricate field. One of the fundamental concepts that arise in this context is the concept of a magnon, which refers to a quantized spin wave. Magnons are crucial for understanding various magnetic properties of materials, especially in ferromagnets and antiferromagnets. When we discuss magnons, we are essentially talking about the collective excitations of the magnetic moments in a material. As these moments interact with one another, they can create waves of spin that propagate through the lattice of the material, leading to the formation of magnons. This phenomenon can be likened to how sound waves propagate through air, but instead, it involves the spins of electrons in a solid. The significance of magnons extends beyond theoretical physics; they play an essential role in various applications, including magnonics, which is an emerging field focused on using magnons for information processing and transmission. Magnonics seeks to exploit the advantages of spin waves over traditional charge-based electronics, potentially leading to faster and more energy-efficient devices. For instance, magnons can be used in spintronic devices, where the spin of electrons is manipulated to carry information, thus enhancing the performance of electronic components. Moreover, the study of magnons has implications for understanding phase transitions in magnetic systems. When a material undergoes a change in temperature, its magnetic properties can alter significantly, leading to different phases such as ferromagnetic or paramagnetic states. The behavior of magnons during these transitions provides valuable insights into the underlying mechanisms that govern magnetism. Researchers often utilize techniques such as neutron scattering or inelastic light scattering to investigate the dynamics of magnons, allowing them to observe how these excitations evolve under varying conditions. Interestingly, magnons can also exhibit unique phenomena such as magnonic band gaps, similar to electronic band gaps in semiconductors. These band gaps can be engineered to control the propagation of magnons, paving the way for novel applications in magnonic circuits and devices. By manipulating the dispersion relations of magnons, scientists can design materials that selectively allow certain frequencies of spin waves to propagate while blocking others, much like how photonic crystals manipulate light. In conclusion, the concept of magnons represents a fascinating intersection of quantum mechanics and magnetism. Understanding magnons not only deepens our knowledge of fundamental physical principles but also opens up exciting possibilities for technological advancements. As research in this area continues to evolve, we may witness the emergence of new devices and systems that leverage the unique properties of magnons for practical applications, ultimately shaping the future of electronics and information technology. The exploration of magnons is a testament to the ever-expanding horizons of scientific inquiry and innovation.
在凝聚态物理学的领域中,磁现象的研究是一个广泛而复杂的领域。在这个背景下,一个基本的概念是magnon,它指的是量子化的自旋波。Magnon对于理解材料的各种磁性特性至关重要,尤其是在铁磁体和反铁磁体中。当我们讨论magnon时,我们实际上是在谈论材料中磁矩的集体激发。随着这些磁矩相互作用,它们可以产生在材料晶格中传播的自旋波,从而形成magnon。这种现象可以比作声波在空气中的传播,但它涉及的是固体中电子的自旋。Magnon的重要性超越了理论物理;它们在各种应用中发挥着重要作用,包括自旋波子学,这是一个新兴领域,专注于利用magnon进行信息处理和传输。自旋波子学旨在利用自旋波相对于传统的基于电荷的电子学的优势,潜在地导致更快和更节能的设备。例如,magnon可以用于自旋电子设备,其中操纵电子的自旋以携带信息,从而增强电子组件的性能。此外,magnon的研究对理解磁性系统中的相变具有重要意义。当材料经历温度变化时,其磁性特性可能会显著改变,导致不同的相,如铁磁相或顺磁相。在这些相变过程中magnon的行为提供了关于支配磁性的基本机制的宝贵见解。研究人员通常利用中子散射或非弹性光散射等技术来研究magnon的动力学,使他们能够观察这些激发在不同条件下的演变。有趣的是,magnon还可以表现出独特的现象,例如自旋波带隙,类似于半导体中的电子带隙。这些带隙可以被工程化以控制magnon的传播,为自旋波子电路和设备中的新应用铺平道路。通过操纵magnon的色散关系,科学家可以设计选择性允许某些频率的自旋波传播而阻止其他频率的材料,就像光子晶体操纵光一样。总之,magnon的概念代表了量子力学与磁性之间一个迷人的交叉点。理解magnon不仅加深了我们对基本物理原理的认识,而且为技术进步开辟了令人兴奋的可能性。随着这一领域的研究不断发展,我们可能会看到利用magnon的独特属性的新设备和系统的出现,最终塑造电子和信息技术的未来。对magnon的探索证明了科学探究和创新的不断扩展的视野。