logarithmic scale

简明释义

对数尺对数标度对数计算尺

英英释义

A logarithmic scale is a nonlinear scale used for a large range of values, where each unit increase on the scale represents a tenfold increase in the quantity being measured.

对数刻度是一种非线性刻度,用于表示大范围的数值,其中刻度上的每个单位增加代表所测量数量的十倍增加。

例句

1.When comparing sound intensity, we often use a logarithmic scale (对数刻度) to express decibels.

在比较声音强度时,我们通常使用对数刻度对数刻度)来表示分贝。

2.The pH scale is an example of a logarithmic scale (对数刻度) that measures acidity or alkalinity.

pH值是一个测量酸碱度的对数刻度对数刻度)的例子。

3.In data visualization, a graph plotted on a logarithmic scale (对数刻度) can help illustrate exponential growth more clearly.

在数据可视化中,绘制在对数刻度对数刻度)上的图表可以更清晰地展示指数增长。

4.In finance, stock prices are sometimes displayed on a logarithmic scale (对数刻度) to better visualize percentage changes.

在金融领域,股票价格有时以对数刻度对数刻度)显示,以更好地可视化百分比变化。

5.The Richter scale is a logarithmic scale (对数刻度) used to measure the magnitude of earthquakes.

里氏震级是一个用来测量地震强度的对数刻度对数刻度)。

作文

Understanding the concept of a logarithmic scale is essential for interpreting various scientific and mathematical data. A logarithmic scale is a nonlinear scale used for a large range of quantities. In this type of scale, each unit increase on the scale represents a tenfold increase in the quantity being measured. This means that while the distance between the numbers increases linearly, the actual values they represent grow exponentially. For instance, if we consider the Richter scale, which measures the magnitude of earthquakes, it is based on a logarithmic scale. An earthquake measuring 5.0 on this scale is ten times more powerful than one measuring 4.0, illustrating how a small numeric difference can indicate a significantly larger difference in magnitude.In practical terms, using a logarithmic scale allows us to visualize and compare numbers that span several orders of magnitude. This is particularly useful in fields such as biology, where populations can vary greatly, or in finance, where interest rates might change dramatically over short periods. For example, when graphing the growth of bacterial populations, a logarithmic scale can help illustrate how quickly bacteria proliferate, even when initial populations are small. Without the logarithmic scale, it would be challenging to represent both small and large values accurately on the same graph.Moreover, the logarithmic scale is also prevalent in sound measurement, specifically in decibels (dB). Sound intensity levels are measured using a logarithmic scale because the human ear perceives sound intensity logarithmically. This means that an increase of 10 dB represents a tenfold increase in intensity, which correlates more closely with our perception of loudness. Understanding this relationship helps in fields like acoustics and audio engineering, where precise measurements are crucial.In summary, the logarithmic scale serves as a powerful tool across various disciplines, allowing for the effective representation and analysis of data that spans multiple orders of magnitude. It simplifies complex relationships into more manageable visual formats, facilitating understanding and communication. As we encounter data that varies widely, recognizing the utility of a logarithmic scale becomes increasingly important. Whether in science, finance, or everyday life, the ability to interpret logarithmic scale data enhances our comprehension of the world around us. Thus, mastering the concept of a logarithmic scale not only aids in academic pursuits but also enriches our overall analytical skills, enabling us to make informed decisions based on quantitative information.

理解对数刻度的概念对于解释各种科学和数学数据至关重要。对数刻度是一种用于大范围量度的非线性刻度。在这种刻度中,刻度上的每个单位增加代表被测量数量的十倍增加。这意味着,虽然数字之间的距离是线性增加的,但它们所代表的实际值却是指数增长的。例如,如果我们考虑里氏震级,它测量地震的强度,基于对数刻度。在这个刻度上,测量为5.0的地震比测量为4.0的地震强十倍,这说明了一个小的数字差异可以表示出强度上显著更大的差异。在实际应用中,使用对数刻度使我们能够可视化和比较跨越几个数量级的数字。这在生物学等领域尤其有用,因为种群可能会有很大的变化,或者在金融领域,利率可能在短时间内急剧变化。例如,在绘制细菌种群的增长时,对数刻度可以帮助说明细菌如何迅速繁殖,即使初始种群较小。如果没有对数刻度,在同一图表上准确表示小值和大值将是具有挑战性的。此外,对数刻度也广泛应用于声音测量,特别是在分贝(dB)中。声音强度水平使用对数刻度进行测量,因为人耳以对数方式感知声音强度。这意味着10 dB的增加代表强度的十倍增加,这与我们对响度的感知更紧密相关。理解这种关系有助于声学和音频工程等领域,在这些领域中,精确的测量至关重要。总之,对数刻度作为一种强大的工具,广泛应用于各个学科,使得有效地表示和分析跨越多个数量级的数据成为可能。它将复杂的关系简化为更易于管理的视觉格式,促进理解和沟通。当我们遇到变化广泛的数据时,认识到对数刻度的实用性变得越来越重要。无论是在科学、金融还是日常生活中,解读对数刻度数据的能力增强了我们对周围世界的理解。因此,掌握对数刻度的概念不仅有助于学术追求,还丰富了我们的整体分析能力,使我们能够基于定量信息做出明智的决策。

相关单词

logarithmic

logarithmic详解:怎么读、什么意思、用法