logarithmic scale

简明释义

对数尺对数标度

英英释义

A logarithmic scale is a nonlinear scale used for a large range of positive values, where each unit increase on the scale corresponds to a tenfold (or other base) increase in the quantity being measured.

对数刻度是一种非线性刻度,用于表示范围很大的正值,其中每个单位的增加对应于被测量数量的十倍(或其他基数)增加。

例句

1.The pH scale is a logarithmic scale 对数刻度, where each unit change represents a tenfold change in acidity or alkalinity.

pH值是一个logarithmic scale 对数刻度,每单位变化代表酸性或碱性变化的十倍。

2.In finance, stock prices are sometimes plotted on a logarithmic scale 对数刻度 to show percentage changes more clearly.

在金融领域,股票价格有时会以logarithmic scale 对数刻度绘制,以更清晰地显示百分比变化。

3.When plotting the frequency of sound on a graph, it is often done on a logarithmic scale 对数刻度 to accommodate the wide range of human hearing.

在图表上绘制声音频率时,通常使用logarithmic scale 对数刻度来适应人类听力的广泛范围。

4.In scientific research, data is often presented on a logarithmic scale 对数刻度 to better visualize exponential growth.

在科学研究中,数据通常以logarithmic scale 对数刻度的形式呈现,以更好地可视化指数增长。

5.The Richter scale for measuring earthquakes is a logarithmic scale 对数刻度, meaning that each whole number increase represents a tenfold increase in measured amplitude.

用于测量地震的里氏震级是一个logarithmic scale 对数刻度,这意味着每增加一个整数,测量到的振幅就增加十倍。

作文

In the world of mathematics and data representation, understanding different scales is crucial for interpreting information accurately. One such scale that plays a significant role in various fields is the logarithmic scale. A logarithmic scale is a nonlinear scale used for a large range of values, where each unit increase on the scale represents a tenfold increase in the quantity being measured. This type of scale is particularly useful when dealing with exponential growth or decay, as it allows us to visualize and compare numbers that span several orders of magnitude.For instance, consider the measurement of earthquakes. The Richter scale, which quantifies the magnitude of seismic events, is a prime example of a logarithmic scale. Each whole number increase on the scale corresponds to a tenfold increase in measured amplitude and approximately 31.6 times more energy release. This means that a magnitude 5 earthquake is not just slightly stronger than a magnitude 4 earthquake; it is significantly more powerful, illustrating the effectiveness of a logarithmic scale in conveying this dramatic difference.Another area where logarithmic scales are commonly used is in finance, particularly in stock market analysis. When observing stock prices over time, a logarithmic scale can help investors understand percentage changes rather than absolute changes. For example, a move from $10 to $20 represents a 100% increase, while a move from $100 to $200 also represents a 100% increase. However, if we were to plot these changes on a linear scale, the larger price movement would appear disproportionately more significant than the smaller one, leading to potential misinterpretation. By using a logarithmic scale, both movements can be represented equally, allowing for a clearer analysis of growth trends.The application of logarithmic scales extends beyond natural phenomena and financial markets; they are also prevalent in scientific research, particularly in biology and chemistry. For example, when studying bacterial growth, scientists often observe exponential growth patterns. By using a logarithmic scale to plot the number of bacteria over time, researchers can more easily identify growth rates and make comparisons across different experiments. This method simplifies the visualization of data that would otherwise be difficult to interpret due to its vast range.Moreover, the use of logarithmic scales is not limited to graphs and charts; it also impacts our understanding of sound intensity. The decibel scale, which measures sound levels, is logarithmic in nature. An increase of 10 decibels represents a tenfold increase in intensity. This means that a sound measured at 80 decibels is ten times more intense than one measured at 70 decibels. Such an understanding is essential in fields like acoustics and audio engineering, where precise measurements can influence design and safety.In conclusion, the logarithmic scale is a powerful tool in mathematics and various scientific disciplines. Its ability to represent vast ranges of data in a manageable way allows for better visualization, comparison, and understanding of complex relationships. Whether it’s measuring earthquakes, analyzing stock prices, studying bacterial growth, or understanding sound intensity, the logarithmic scale provides clarity and insight that linear scales cannot offer. As we continue to encounter data that spans multiple orders of magnitude, the importance of mastering the concept of logarithmic scales will only grow, making it an essential skill for students, professionals, and researchers alike.

在数学和数据表示的世界中,理解不同的比例对于准确解读信息至关重要。其中一个在各个领域中发挥重要作用的比例是对数尺度对数尺度是一种非线性尺度,用于表示大范围的值,其中每单位的增加代表所测量数量的十倍增加。这种类型的尺度在处理指数增长或衰减时特别有用,因为它使我们能够可视化和比较跨越多个数量级的数字。例如,考虑地震的测量。里氏震级就是量化地震事件的一个典型例子,它是对数尺度的一个主要应用。震级上每增加一个整数,所测得的振幅就增加十倍,释放的能量大约增加31.6倍。这意味着震级为5的地震不仅仅比震级为4的地震稍微强一些;它的威力显著更强,说明了对数尺度在传达这种戏剧性差异方面的有效性。对数尺度常用于金融领域,特别是在股市分析中。当观察股票价格随时间变化时,使用对数尺度可以帮助投资者理解百分比变化而不是绝对变化。例如,从10美元上涨到20美元代表100%的增长,而从100美元上涨到200美元也代表100%的增长。然而,如果我们在一个线性尺度上绘制这些变化,较大的价格变动将看起来不成比例地更加显著,从而导致潜在的误解。通过使用对数尺度,这两种变动可以被平等地表示,从而更清晰地分析增长趋势。对数尺度的应用不仅限于自然现象和金融市场;它们在科学研究中也很常见,特别是在生物学和化学中。例如,在研究细菌生长时,科学家通常会观察到指数增长模式。通过使用对数尺度绘制细菌数量随时间变化的图表,研究人员可以更轻松地识别生长率并在不同实验之间进行比较。这种方法简化了数据的可视化,否则由于其广泛的范围将难以解释。此外,对数尺度的使用不仅限于图表和图形;它还影响我们对声音强度的理解。分贝尺度用于测量声音水平,其本质上是对数的。增加10分贝代表强度的十倍增加。这意味着测量为80分贝的声音比测量为70分贝的声音强十倍。这种理解在声学和音频工程等领域至关重要,其中精确的测量可以影响设计和安全。总之,对数尺度是数学和各种科学学科中的一种强大工具。它以可管理的方式表示大量数据的能力,使得复杂关系的可视化、比较和理解变得更加容易。无论是测量地震、分析股票价格、研究细菌生长还是理解声音强度,对数尺度提供了线性尺度无法提供的清晰度和洞察力。随着我们继续遇到跨越多个数量级的数据,掌握对数尺度这一概念的重要性只会增加,使其成为学生、专业人士和研究人员必备的技能。

相关单词

logarithmic

logarithmic详解:怎么读、什么意思、用法