local cavitation number

简明释义

局部空化数

英英释义

The local cavitation number is a dimensionless quantity used in fluid dynamics to characterize the potential for cavitation in a specific location within a fluid flow, defined as the ratio of the difference between the local static pressure and the vapor pressure of the fluid to the dynamic pressure of the flow.

局部气蚀数是流体动力学中用于表征流体流动中特定位置发生气蚀潜力的无量纲量,定义为局部静压与流体蒸汽压力之差与流动动态压力的比值。

例句

1.A low local cavitation number 局部气蚀数 indicates a higher risk of cavitation damage in turbines.

局部气蚀数 local cavitation number表明涡轮机中气蚀损坏的风险更高。

2.The engineer calculated the local cavitation number 局部气蚀数 to assess the risk of cavitation in the pump design.

工程师计算了局部气蚀数 local cavitation number以评估泵设计中气蚀的风险。

3.The research focused on how the local cavitation number 局部气蚀数 affects bubble dynamics in hydraulic systems.

研究集中在局部气蚀数 local cavitation number如何影响液压系统中的气泡动力学。

4.In high-speed flow conditions, the local cavitation number 局部气蚀数 can significantly influence the performance of propellers.

在高速流动条件下,局部气蚀数 local cavitation number可以显著影响螺旋桨的性能。

5.Measuring the local cavitation number 局部气蚀数 helps in understanding the behavior of fluids near solid boundaries.

测量局部气蚀数 local cavitation number有助于理解流体在固体边界附近的行为。

作文

Cavitation is a phenomenon that occurs when the pressure of a liquid drops below its vapor pressure, leading to the formation of vapor-filled cavities or bubbles. These bubbles can collapse violently, causing shock waves and potential damage to nearby surfaces. In fluid dynamics, understanding cavitation is crucial for various applications, including hydraulic machinery, marine propellers, and even in medical devices like ultrasound equipment. One important parameter used to characterize cavitation is the local cavitation number, which provides insights into the likelihood and intensity of cavitation occurring in specific regions of a fluid flow. The local cavitation number is defined as the difference between the local pressure and the vapor pressure of the liquid, normalized by the kinetic energy per unit volume of the flow. This dimensionless number helps engineers and scientists predict where cavitation might occur and how severe it could be.To elaborate further, the local cavitation number (often denoted as σ) is calculated using the formula:σ = (P - Pv) / (0.5 * ρ * V^2)where P is the local pressure, Pv is the vapor pressure of the liquid, ρ is the density of the liquid, and V is the local flow velocity. A higher local cavitation number indicates a lower risk of cavitation, while a lower value suggests that the conditions are more favorable for cavitation to occur. Understanding this concept is vital for designing systems that operate in environments prone to cavitation, such as pumps and turbines.In practical applications, engineers often use computational fluid dynamics (CFD) simulations to visualize the local cavitation number across different sections of a flow field. By analyzing these simulations, they can identify regions where the cavitation risk is high and take measures to mitigate it, such as altering the design of blades in a pump or adjusting operating conditions. For instance, if a certain section of a turbine shows a low local cavitation number, engineers might increase the inlet pressure or redesign the blade profile to ensure smoother flow and reduce the chances of cavitation.Moreover, the implications of cavitation extend beyond just mechanical failures. In marine environments, cavitation can affect the performance and efficiency of propellers, leading to increased fuel consumption and reduced operational effectiveness. In medical ultrasound, cavitation can enhance the effectiveness of certain treatments, but excessive cavitation can also cause tissue damage. Thus, understanding the local cavitation number becomes essential not only for preventing damage but also for optimizing performance in various fields.In conclusion, the local cavitation number is a critical parameter in the study of fluid dynamics and cavitation phenomena. Its ability to predict the onset and severity of cavitation helps engineers design safer and more efficient systems across multiple industries. By integrating this knowledge into practical applications, we can improve the reliability and performance of equipment that operates under varying pressure conditions, ultimately leading to advancements in technology and engineering solutions.

气蚀是一种现象,当液体的压力降到其蒸汽压力以下时,会导致充满蒸汽的空腔或气泡的形成。这些气泡会猛烈地崩溃,产生冲击波并可能对附近的表面造成损害。在流体动力学中,理解气蚀对于各种应用至关重要,包括液压机械、海洋螺旋桨,甚至在超声设备等医疗设备中。一个用于表征气蚀的重要参数是局部气蚀数,它提供了关于特定流体流动区域中气蚀发生的可能性和强度的见解。局部气蚀数被定义为局部压力与液体蒸汽压力之间的差值,归一化为流动的单位体积动能。这个无量纲数帮助工程师和科学家预测气蚀可能发生的地方以及其严重程度。进一步阐述,局部气蚀数(通常表示为σ)的计算公式为:σ = (P - Pv) / (0.5 * ρ * V^2)其中P是局部压力,Pv是液体的蒸汽压力,ρ是液体的密度,V是局部流速。较高的局部气蚀数表示气蚀风险较低,而较低的值则表明条件更有利于气蚀的发生。理解这个概念对于设计在易发生气蚀环境中的系统(如泵和涡轮)至关重要。在实际应用中,工程师通常使用计算流体动力学(CFD)模拟来可视化流场不同区域的局部气蚀数。通过分析这些模拟,他们可以识别出气蚀风险高的区域,并采取措施减轻这种风险,例如改变泵中叶片的设计或调整操作条件。例如,如果某个涡轮的特定区域显示出低局部气蚀数,工程师可能会增加入口压力或重新设计叶片轮廓,以确保流动更加平稳,从而减少气蚀的可能性。此外,气蚀的影响不仅限于机械故障。在海洋环境中,气蚀会影响螺旋桨的性能和效率,导致燃料消耗增加和操作效果降低。在医学超声中,气蚀可以增强某些治疗的有效性,但过度的气蚀也可能导致组织损伤。因此,理解局部气蚀数变得至关重要,不仅是为了防止损坏,也是为了优化各个领域的性能。总之,局部气蚀数是流体动力学和气蚀现象研究中的一个关键参数。它预测气蚀的发生和严重性的能力帮助工程师设计出更安全、更高效的系统,适用于多个行业。通过将这一知识融入实际应用,我们可以改善在不同压力条件下运行的设备的可靠性和性能,最终推动技术和工程解决方案的发展。

相关单词

local

local详解:怎么读、什么意思、用法

cavitation

cavitation详解:怎么读、什么意思、用法