maximum subdivision index
简明释义
最大分舱指数
英英释义
例句
1.The maximum subdivision index is crucial for maintaining ecological balance in urban areas.
在城市地区,最大细分指数对维持生态平衡至关重要。
2.To ensure sustainable development, the city imposed a maximum subdivision index on new projects.
为了确保可持续发展,该市对新项目施加了最大细分指数。
3.The architect calculated the maximum subdivision index to determine the optimal layout for the new residential complex.
建筑师计算了最大细分指数以确定新住宅区的最佳布局。
4.The developer was limited by the maximum subdivision index set by local regulations.
开发商受到地方法规设定的最大细分指数的限制。
5.In urban planning, the maximum subdivision index helps in assessing land use efficiency.
在城市规划中,最大细分指数有助于评估土地使用效率。
作文
In the field of mathematics and computer science, the concept of the maximum subdivision index plays a crucial role in understanding how complex structures can be simplified or divided into manageable parts. The maximum subdivision index refers to the highest level of division that a particular geometric shape or data set can undergo while still maintaining its essential properties. This concept is particularly important in areas such as computational geometry, where algorithms often need to process large amounts of data efficiently. For instance, consider a complex polygon that needs to be analyzed for various properties like area, perimeter, or even rendering in a graphical application. By applying the maximum subdivision index, one can determine how many times this polygon can be subdivided into smaller sections without losing critical information about its shape. Each subdivision may reveal new insights or allow for better optimization in rendering processes.Moreover, the maximum subdivision index can also be applied in fields such as urban planning and architecture. When designing a new building or a public space, architects often need to consider how their designs will fit into the existing landscape. By utilizing the maximum subdivision index, planners can break down larger areas into smaller, more manageable plots that can be developed independently, while still ensuring that the overall design remains cohesive and functional.In addition to its practical applications, the maximum subdivision index also has theoretical implications. It allows researchers to explore the limits of certain mathematical models and understand how they behave under various conditions. For example, in fractal geometry, the maximum subdivision index can help define the complexity of a fractal shape, indicating how finely it can be divided before it becomes indistinguishable from its original form.Furthermore, the concept of the maximum subdivision index can extend beyond traditional mathematics into areas like economics and social sciences. In these fields, analysts often deal with large datasets that require segmentation for better analysis. By determining the maximum subdivision index, researchers can identify the most effective ways to categorize information, leading to more accurate conclusions and predictions.In conclusion, the maximum subdivision index is a multifaceted concept that finds relevance across various disciplines. Whether in mathematics, architecture, or data analysis, understanding how to effectively apply this index can lead to enhanced problem-solving capabilities and greater efficiency in tackling complex issues. As our world continues to grow in complexity, mastering concepts like the maximum subdivision index will become increasingly important for professionals in many fields.
在数学和计算机科学领域,最大细分指数的概念在理解如何将复杂结构简化或划分为可管理的部分方面起着至关重要的作用。最大细分指数指的是特定几何形状或数据集可以经历的最高细分级别,同时仍然保持其基本属性。这个概念在计算几何等领域尤为重要,因为算法通常需要高效地处理大量数据。例如,考虑一个复杂的多边形,需要分析其各种属性,如面积、周长或甚至在图形应用中的渲染。通过应用最大细分指数,人们可以确定这个多边形可以细分成多少个较小的部分,而不失去关于其形状的重要信息。每一次细分可能会揭示新的见解,或者允许在渲染过程中进行更好的优化。此外,最大细分指数也可以应用于城市规划和建筑等领域。在设计新建筑或公共空间时,建筑师常常需要考虑他们的设计如何融入现有景观。通过利用最大细分指数,规划者可以将较大的区域划分为较小的、可独立开发的地块,同时确保整体设计保持一致性和功能性。除了其实际应用外,最大细分指数还有理论意义。它使研究人员能够探索某些数学模型的极限,并理解它们在各种条件下的行为。例如,在分形几何中,最大细分指数可以帮助定义分形形状的复杂性,指示它可以细分到多细,才会在视觉上与其原始形式无异。此外,最大细分指数的概念还可以扩展到经济学和社会科学等领域。在这些领域,分析师通常处理需要细分的大型数据集,以便更好地进行分析。通过确定最大细分指数,研究人员可以识别最有效的信息分类方式,从而得出更准确的结论和预测。总之,最大细分指数是一个多方面的概念,在各个学科中都有相关性。无论是在数学、建筑还是数据分析中,理解如何有效应用这一指数都可以提高解决问题的能力,并在应对复杂问题时提高效率。随着我们世界的复杂性不断增长,掌握像最大细分指数这样的概念将在许多领域的专业人士中变得越来越重要。
相关单词