magnetic dipole

简明释义

磁偶极子

英英释义

A magnetic dipole is a magnetic source that has two poles, a north and a south, and produces a magnetic field that decreases with distance from the dipole.

磁偶极子是一个具有两个极(北极和南极)的磁源,产生的磁场随着距离的增加而减弱。

例句

1.In MRI machines, the magnetic dipole 磁偶极子 properties of hydrogen atoms are utilized for imaging.

在MRI机器中,利用氢原子的磁偶极子 磁偶极子特性进行成像。

2.The alignment of a magnetic dipole 磁偶极子 can significantly affect the performance of electronic devices.

一个磁偶极子 磁偶极子的排列可以显著影响电子设备的性能。

3.The magnetic dipole 磁偶极子 moment is a crucial factor in determining the torque experienced by a magnet.

对于一个磁铁来说,磁偶极子 磁偶极子矩是决定其所受扭矩的重要因素。

4.Researchers study the interactions between magnetic dipoles 磁偶极子 to understand complex magnetic materials.

研究人员研究磁偶极子 磁偶极子之间的相互作用,以理解复杂的磁性材料。

5.The behavior of a magnetic dipole 磁偶极子 in an external magnetic field can be predicted using classical physics.

在外部磁场中,磁偶极子 磁偶极子的行为可以通过经典物理进行预测。

作文

In the realm of physics, one fundamental concept that often arises is the idea of a magnetic dipole. A magnetic dipole refers to a magnetic source that has two distinct poles: a north pole and a south pole. This concept is crucial in understanding how magnetic fields behave and interact with various materials. To illustrate this, consider a simple bar magnet. It is an excellent example of a magnetic dipole, as it has a clear north and south pole, and the magnetic field lines emanate from the north pole and curve around to the south pole.The significance of magnetic dipole moments extends beyond just theoretical physics; they play a vital role in numerous practical applications. For instance, in the field of electronics, magnetic dipoles are essential in the functioning of devices such as magnetic resonance imaging (MRI) machines. These machines utilize the principles of magnetic dipole interactions to create detailed images of the human body's internal structures.Furthermore, the behavior of magnetic dipoles can be observed in nature. The Earth itself behaves like a giant magnetic dipole, with its magnetic field generated by the movement of molten iron in its outer core. This geodynamo effect results in a magnetic field that protects our planet from solar radiation and cosmic rays. Understanding the Earth's magnetic dipole is crucial for navigation, as compasses align themselves with the Earth's magnetic field, pointing towards the magnetic north.In addition to natural occurrences, magnetic dipoles are also engineered in various technologies. For example, in data storage devices, such as hard drives, information is stored by manipulating magnetic dipoles on the disk surface. The orientation of these dipoles represents binary data, allowing for efficient data retrieval and storage.Moreover, the study of magnetic dipoles leads to advancements in materials science. Researchers are exploring new materials that exhibit unique magnetic dipole properties, which could revolutionize technology in fields such as quantum computing and spintronics. Spintronics, for instance, is a technology that exploits the intrinsic spin of electrons, alongside their charge, to develop faster and more efficient electronic devices.In conclusion, the concept of a magnetic dipole is integral to both theoretical and applied physics. From understanding the fundamental forces of nature to developing cutting-edge technologies, magnetic dipoles are everywhere in our lives. Their influence spans across various fields, making them a topic of continuous research and exploration. As we delve deeper into the world of magnetic dipoles, we uncover new possibilities and innovations that can shape our future. Understanding this concept not only enriches our knowledge of physics but also enhances our ability to harness the power of magnetism in practical applications.

在物理学领域,一个经常出现的基本概念是“磁偶极子”的概念。“磁偶极子”指的是一种具有两个不同极的磁源:北极和南极。这个概念对理解磁场的行为及其与各种材料的相互作用至关重要。为了说明这一点,可以考虑一个简单的条形磁铁。它是一个很好的“磁偶极子”的例子,因为它有明显的北极和南极,磁场线从北极发出,并弯曲到南极。“磁偶极子”矩的意义超越了理论物理;它们在许多实际应用中发挥着重要作用。例如,在电子学领域,“磁偶极子”在磁共振成像(MRI)机器的功能中至关重要。这些机器利用“磁偶极子”相互作用的原理,创建人体内部结构的详细图像。此外,“磁偶极子”的行为可以在自然界中观察到。地球本身就像一个巨大的“磁偶极子”,其磁场由外核中熔融铁的运动产生。这种地球动力效应导致了一个保护我们星球免受太阳辐射和宇宙射线的磁场。理解地球的“磁偶极子”对于导航至关重要,因为指南针会与地球的磁场对齐,指向磁北。除了自然现象,“磁偶极子”也在各种技术中被设计。例如,在数据存储设备(如硬盘)中,通过操控磁盘表面的“磁偶极子”来存储信息。这些偶极子的取向代表二进制数据,从而实现高效的数据检索和存储。此外,“磁偶极子”的研究推动了材料科学的发展。研究人员正在探索具有独特“磁偶极子”特性的材料,这可能会在量子计算和自旋电子学等领域引发技术革命。例如,自旋电子学是一种利用电子的内在自旋以及电荷来开发更快、更高效的电子设备的技术。总之,“磁偶极子”的概念对理论和应用物理都是不可或缺的。从理解自然的基本力量到开发尖端技术,“磁偶极子”在我们的生活中无处不在。它们的影响跨越多个领域,使其成为持续研究和探索的话题。当我们深入了解“磁偶极子”的世界时,我们会发现新的可能性和创新,这些创新可以塑造我们的未来。理解这一概念不仅丰富了我们对物理学的知识,也增强了我们在实际应用中利用磁力的能力。

相关单词

magnetic

magnetic详解:怎么读、什么意思、用法

dipole

dipole详解:怎么读、什么意思、用法