kinematic mechanism
简明释义
运动机构
英英释义
例句
1.The design of the robot arm incorporates a sophisticated 运动学机制 that allows for precise movements.
机器臂的设计采用了复杂的运动学机制,以实现精确的运动。
2.The 运动学机制 in this clock allows the gears to move smoothly and accurately.
这个钟表中的运动学机制使得齿轮能够平稳而准确地运转。
3.In automotive engineering, the 运动学机制 of the suspension system is critical for vehicle stability.
在汽车工程中,悬挂系统的运动学机制对于车辆稳定性至关重要。
4.Engineers often simulate the 运动学机制 of a new product before actual production.
工程师们通常在实际生产之前模拟新产品的运动学机制。
5.Understanding the 运动学机制 behind this machine can help improve its efficiency.
理解这台机器背后的运动学机制可以帮助提高其效率。
作文
The study of motion is a fundamental aspect of physics and engineering, and one of the key concepts in this field is the kinematic mechanism. A kinematic mechanism refers to a system of interconnected parts that work together to produce movement without considering the forces that cause the motion. This concept is crucial for understanding how machines operate and how various components interact to achieve desired motions. In essence, a kinematic mechanism focuses solely on the geometry of motion, allowing engineers and designers to analyze and optimize the movement of mechanical systems.To illustrate the importance of kinematic mechanisms, consider the example of a simple robotic arm. The arm consists of several links connected by joints, which can rotate or translate. By studying the kinematic mechanism of the robotic arm, engineers can determine the position and orientation of the end effector (the part of the arm that interacts with objects) based on the angles of the joints. This analysis helps in programming the arm to perform specific tasks with precision.Moreover, kinematic mechanisms are not limited to robotics; they are found in various applications, from automotive engineering to manufacturing processes. For instance, in an automobile, the transmission system involves a series of gears and linkages that transmit power from the engine to the wheels. Understanding the kinematic mechanism of this system allows engineers to design more efficient transmissions that improve fuel economy and performance.In addition to practical applications, the study of kinematic mechanisms has significant theoretical implications. It provides a framework for analyzing complex systems and predicting their behavior under different conditions. By applying principles of kinematics, researchers can develop mathematical models that describe the motion of various mechanical systems, paving the way for innovations in technology.Furthermore, the development of computer-aided design (CAD) software has revolutionized the way engineers approach kinematic mechanisms. These tools enable designers to create detailed simulations of mechanical systems, allowing them to visualize and test the motion of components before physical prototypes are built. This capability not only saves time and resources but also enhances the accuracy of designs.In conclusion, the concept of kinematic mechanisms is integral to the fields of engineering and physics. By providing insights into the geometry of motion, kinematic mechanisms enable engineers to design and optimize machines and systems across various industries. As technology continues to advance, the importance of understanding kinematic mechanisms will only grow, leading to more innovative solutions and improved performance in mechanical systems.
运动的研究是物理学和工程学的一个基本方面,而这个领域的一个关键概念就是运动学机制。运动学机制指的是一个相互连接的部件系统,这些部件共同作用以产生运动,而不考虑导致运动的力量。这个概念对于理解机器如何运作以及各种组件如何相互作用以实现所需的运动至关重要。简而言之,运动学机制专注于运动的几何形状,使工程师和设计师能够分析和优化机械系统的运动。为了说明运动学机制的重要性,考虑一个简单的机器人手臂的例子。这个手臂由几个链接通过关节连接而成,关节可以旋转或平移。通过研究机器人手臂的运动学机制,工程师可以根据关节的角度确定末端执行器(与物体交互的手臂部分)的位置信息和方向。这种分析有助于编程手臂以精确执行特定任务。此外,运动学机制并不仅限于机器人技术;它们在汽车工程和制造过程中也随处可见。例如,在汽车中,传动系统涉及一系列齿轮和连杆,将动力从发动机传递到车轮。理解这一系统的运动学机制使工程师能够设计出更高效的变速器,从而提高燃油经济性和性能。除了实际应用,运动学机制的研究还有重要的理论意义。它为分析复杂系统和预测不同条件下的行为提供了框架。通过应用运动学原理,研究人员可以开发出描述各种机械系统运动的数学模型,为技术创新铺平道路。此外,计算机辅助设计(CAD)软件的发展彻底改变了工程师处理运动学机制的方法。这些工具使设计师能够创建机械系统的详细模拟,允许他们在物理原型构建之前可视化和测试组件的运动。这种能力不仅节省了时间和资源,还提高了设计的准确性。总之,运动学机制的概念对工程学和物理学领域至关重要。通过提供对运动几何的洞察,运动学机制使工程师能够设计和优化各行业的机器和系统。随着技术的不断进步,理解运动学机制的重要性只会增加,从而导致更具创新性的解决方案和机械系统的性能提升。
相关单词