kinematic friction coefficient
简明释义
运动摩擦系数
英英释义
例句
1.The kinematic friction coefficient 运动摩擦系数 between the tire and the road affects vehicle acceleration.
轮胎与道路之间的运动摩擦系数 kinematic friction coefficient 影响车辆加速。
2.The engineer calculated the kinematic friction coefficient 运动摩擦系数 for the new material to ensure optimal performance in the machinery.
工程师计算了新材料的运动摩擦系数 kinematic friction coefficient,以确保机械的最佳性能。
3.To improve efficiency, the team focused on reducing the kinematic friction coefficient 运动摩擦系数 in the sliding mechanisms.
为了提高效率,团队专注于降低滑动机构中的运动摩擦系数 kinematic friction coefficient。
4.In robotics, understanding the kinematic friction coefficient 运动摩擦系数 is crucial for accurate movement and control.
在机器人技术中,理解运动摩擦系数 kinematic friction coefficient 对于精确的运动和控制至关重要。
5.Researchers measured the kinematic friction coefficient 运动摩擦系数 of different lubricants in their experiments.
研究人员在实验中测量了不同润滑剂的运动摩擦系数 kinematic friction coefficient。
作文
Friction is a fundamental force that plays a crucial role in our everyday lives. It is the resistance that one surface or object encounters when moving over another. Among the various types of friction, the concept of the kinematic friction coefficient is particularly significant in physics and engineering. The kinematic friction coefficient (运动摩擦系数) is a dimensionless value that quantifies the amount of friction between two moving surfaces. Understanding this coefficient is essential for predicting how objects will behave when they slide against each other.In practical applications, the kinematic friction coefficient helps engineers design systems and products that require precise control of movement. For instance, in the automotive industry, the kinematic friction coefficient is critical in determining how tires grip the road. A higher coefficient indicates greater friction, which translates to better traction and control for vehicles, especially during acceleration and braking.The kinematic friction coefficient is influenced by several factors, including the materials involved, the surface roughness, and the presence of lubricants. Different materials exhibit different coefficients; for example, rubber on asphalt has a much higher kinematic friction coefficient than ice on metal. This variation is crucial for engineers when selecting materials for specific applications, ensuring that the right balance between friction and wear is achieved.Another important aspect of the kinematic friction coefficient is its dependency on speed. As the speed of the sliding surfaces changes, the coefficient can also vary. Generally, at lower speeds, the coefficient is higher due to increased contact time between the surfaces, while at higher speeds, it may decrease because of thermal effects and the formation of a lubrication film. Understanding this behavior allows engineers to optimize performance in dynamic systems, such as conveyor belts or machinery components.Moreover, the kinematic friction coefficient is not just limited to mechanical systems; it also has implications in sports science. Athletes, particularly sprinters and skiers, benefit from understanding how the kinematic friction coefficient affects their performance. For example, sprinters aim to maximize their speed by choosing footwear with an optimal kinematic friction coefficient that provides enough grip without hindering their stride.In conclusion, the kinematic friction coefficient (运动摩擦系数) is a vital concept that permeates various fields, from engineering to sports science. By understanding and applying this coefficient, professionals can enhance the performance and safety of numerous systems and activities. Whether designing safer cars, optimizing athletic performance, or developing efficient machinery, the kinematic friction coefficient serves as a key parameter in the analysis and application of frictional forces. As technology continues to advance, the importance of accurately measuring and utilizing the kinematic friction coefficient will only grow, highlighting its relevance in both theoretical studies and practical applications.
摩擦是一个基本的力,在我们的日常生活中扮演着至关重要的角色。它是一个表面或物体在另一个表面上移动时遇到的阻力。在各种类型的摩擦中,运动摩擦系数的概念在物理学和工程学中尤为重要。运动摩擦系数(kinematic friction coefficient)是一个无量纲值,用于量化两个运动表面之间的摩擦量。理解这个系数对于预测物体在相互滑动时的行为至关重要。在实际应用中,运动摩擦系数帮助工程师设计需要精确控制运动的系统和产品。例如,在汽车工业中,运动摩擦系数对确定轮胎与路面之间的抓地力至关重要。较高的系数表示更大的摩擦,这意味着车辆在加速和制动时具有更好的牵引力和控制力。运动摩擦系数受多个因素的影响,包括所涉及的材料、表面粗糙度以及润滑剂的存在。不同的材料表现出不同的系数;例如,橡胶在沥青上的摩擦系数远高于冰在金属上的摩擦系数。这种变化对于工程师在特定应用中选择材料至关重要,以确保在摩擦和磨损之间取得正确的平衡。运动摩擦系数的另一个重要方面是其对速度的依赖性。当滑动表面的速度变化时,系数也可能会变化。通常,在较低速度下,由于表面之间的接触时间增加,系数较高,而在较高速度下,由于热效应和润滑膜的形成,系数可能会降低。理解这种行为使工程师能够优化动态系统的性能,例如输送带或机械部件。此外,运动摩擦系数不仅限于机械系统;它在运动科学中也有重要意义。运动员,特别是短跑运动员和滑雪者,了解运动摩擦系数如何影响他们的表现。例如,短跑运动员通过选择具有最佳运动摩擦系数的鞋子来最大化他们的速度,该系数提供足够的抓地力而不会妨碍他们的步幅。总之,运动摩擦系数(kinematic friction coefficient)是一个重要的概念,渗透到各个领域,从工程到运动科学。通过理解和应用这个系数,专业人士可以提高众多系统和活动的性能和安全性。无论是设计更安全的汽车、优化运动表现,还是开发高效的机械,运动摩擦系数都是分析和应用摩擦力的关键参数。随着技术的不断进步,准确测量和利用运动摩擦系数的重要性将只会增加,突显其在理论研究和实际应用中的相关性。
相关单词