isotropic antenna

简明释义

无方向性天线

英英释义

An isotropic antenna is a theoretical antenna that radiates electromagnetic waves equally in all directions, providing a uniform radiation pattern.

各向同性天线是一种理论上的天线,它在所有方向上均匀辐射电磁波,提供均匀的辐射模式。

例句

1.The radiation pattern of an isotropic antenna 各向同性天线 is spherical.

各向同性天线 isotropic antenna 的辐射模式是球形的。

2.The gain of an isotropic antenna 各向同性天线 is defined as 0 dBi.

一个各向同性天线 isotropic antenna 的增益定义为0 dBi。

3.When designing a wireless communication system, the performance of an isotropic antenna 各向同性天线 can be a baseline for comparison.

在设计无线通信系统时,各向同性天线 isotropic antenna 的性能可以作为比较的基准。

4.An isotropic antenna 各向同性天线 radiates power uniformly in all directions.

一个各向同性天线 isotropic antenna 在所有方向上均匀辐射功率。

5.In theoretical studies, an isotropic antenna 各向同性天线 is often used as a reference model.

在理论研究中,各向同性天线 isotropic antenna 通常用作参考模型。

作文

In the field of telecommunications and radio frequency engineering, the concept of an isotropic antenna is fundamental. An isotropic antenna is a theoretical antenna that radiates power uniformly in all directions in three-dimensional space. This means that it has no preferred direction for signal emission, and its radiation pattern is spherical. Understanding this concept is crucial for engineers and technicians who design and analyze communication systems. The idea of an isotropic antenna serves as a reference point for evaluating the performance of real antennas. While no physical antenna can achieve perfect isotropy, the isotropic antenna model provides a baseline against which other antennas can be compared. For instance, when an engineer designs a new antenna, they may measure its gain relative to an isotropic antenna. Gain is a measure of how much power is transmitted in a particular direction compared to an isotropic antenna, and it is expressed in decibels (dB). A higher gain indicates that the antenna is more efficient at directing energy in specific directions, which is often desirable in communication applications. One of the key applications of the isotropic antenna concept is in the analysis of wireless communication systems. When planning the layout of cellular networks, engineers use the isotropic antenna model to predict how signals will propagate through the environment. By assuming that base stations have isotropic antennas, they can create models to estimate coverage areas and identify potential dead zones where signal strength may be weak. This modeling is essential for optimizing network performance and ensuring that users receive reliable service. Moreover, the isotropic antenna also plays a significant role in understanding the principles of antenna design. For example, when designing a directional antenna, engineers often start by considering how the antenna would perform if it were isotropic. They then modify the design to focus the radiation pattern in a specific direction, enhancing gain and improving overall efficiency. This process highlights the importance of the isotropic antenna as a foundational concept in antenna theory. In practical terms, while true isotropic antennas do not exist, some antennas are designed to approximate isotropic behavior. These include dipole antennas and monopole antennas, which exhibit relatively uniform radiation patterns over certain frequency ranges. Understanding these approximations allows engineers to make informed decisions when selecting antennas for specific applications. In conclusion, the isotropic antenna is a crucial concept in telecommunications and antenna design. It serves as a theoretical benchmark for evaluating real antennas, aids in the planning of wireless networks, and informs the design of various types of antennas. By grasping the significance of the isotropic antenna, professionals in the field can enhance their understanding of radio wave propagation and improve the performance of communication systems. As technology continues to evolve, the principles associated with the isotropic antenna will remain relevant, guiding future innovations in wireless communication.

在电信和无线电频率工程领域,各向同性天线的概念是基础。各向同性天线是一种理论上的天线,它在三维空间中均匀地辐射功率。这意味着它没有信号发射的优选方向,其辐射模式是球形的。理解这一概念对于设计和分析通信系统的工程师和技术人员至关重要。各向同性天线的概念作为评估实际天线性能的参考点。虽然没有物理天线能够实现完美的各向同性,但各向同性天线模型提供了一个基准,可以用来比较其他天线。例如,当工程师设计新天线时,他们可能会相对于各向同性天线测量其增益。增益是指与各向同性天线相比,在特定方向上传输的功率多少,通常以分贝(dB)表示。更高的增益表明天线在特定方向上更有效地引导能量,这在通信应用中通常是可取的。各向同性天线概念的一个关键应用是在无线通信系统的分析中。在规划蜂窝网络布局时,工程师使用各向同性天线模型来预测信号如何在环境中传播。通过假设基站具有各向同性天线,他们可以创建模型来估算覆盖区域并识别潜在的信号弱区。这种建模对于优化网络性能和确保用户获得可靠服务至关重要。此外,各向同性天线在理解天线设计原理方面也发挥着重要作用。例如,在设计定向天线时,工程师通常会首先考虑如果天线是各向同性的,它将如何表现。然后,他们修改设计以将辐射模式集中在特定方向,从而增强增益并提高整体效率。这一过程突显了各向同性天线作为天线理论基础概念的重要性。在实际应用中,虽然真正的各向同性天线并不存在,但一些天线被设计为近似各向同性行为。这些包括偶极子天线和单极子天线,它们在某些频率范围内表现出相对均匀的辐射模式。理解这些近似值使工程师在选择特定应用的天线时能够做出明智的决策。总之,各向同性天线是电信和天线设计中的关键概念。它作为评估真实天线的理论基准,有助于无线网络的规划,并为各种类型天线的设计提供信息。通过掌握各向同性天线的重要性,行业专业人员可以增强对无线电波传播的理解,提高通信系统的性能。随着技术的不断发展,与各向同性天线相关的原理将继续保持相关性,指导未来无线通信的创新。

相关单词

isotropic

isotropic详解:怎么读、什么意思、用法

antenna

antenna详解:怎么读、什么意思、用法