multiaxial

简明释义

[ˌmʌltɪˈæksɪəl][ˌmʌltɪˈæksɪəl]

adj. 多轴的;有多个轴的

英英释义

Relating to or involving multiple axes.

与多个轴相关或涉及多个轴的。

In mathematics or mechanics, describing a system that has more than one axis of rotation or measurement.

在数学或力学中,描述一个具有多个旋转或测量轴的系统。

单词用法

multiaxial testing

多轴测试

multiaxial analysis

多轴分析

multiaxial stress

多轴应力

multiaxial fatigue

多轴疲劳

multiaxial loading

多轴加载

multiaxial behavior

多轴行为

同义词

multi-dimensional

多维的

The analysis of multi-dimensional data can provide deeper insights.

对多维数据的分析可以提供更深入的见解。

multi-directional

多方向的

In robotics, multi-directional movement enhances flexibility.

在机器人技术中,多方向运动增强了灵活性。

polyaxial

多轴的

Polyaxial testing is used in materials science to assess strength.

多轴测试用于材料科学以评估强度。

反义词

uniaxial

单轴的

The uniaxial test is used to determine the tensile strength of materials.

单轴测试用于确定材料的拉伸强度。

biaxial

双轴的

Biaxial loading conditions are often considered in structural analysis.

在结构分析中,通常考虑双轴加载条件。

例句

1.Multiaxial strain could refine the grains and improve the properties of the alloys;

多向强应变可细化晶粒,提高合金的力学性能;

2.The iterative formulas of elastoplastic stochastic finite element method (SFEM) under cyclic loading are deduced and the random responses of local multiaxial stress and strain are calculated.

推导了交变载荷下弹塑性随机有限元的迭代格式,计算了局部多轴应力应变的随机响应。

3.A method is outlined for making low cycle fatigue life prediction for engineering components subject to multiaxial loading.

介绍了一种预测受多轴交变载荷工程构件的低周疲劳寿命的方法。

4.The multiaxial cyclic characteristic of GH4169 was investigated for the thin tubular multiaxial fatigue specimen under proportional and non-proportional loading at high temperature.

薄壁疲劳试,控制应扭循环温合金材GH4169循环特性试验研究。

5.The results showed that most multiaxial fatigue cracks were initiated and propagated along the direction of maximum shear plane or on the direction perpendicular to the tubular specimen's axis.

研究表明,多轴疲劳裂纹主要是沿最大剪切平面或垂直于管形试样的轴线方向扩展。

6.This article introduces the characteristics and application of warp-knitted geotextiles that lacework, reversibles, biaxial and multiaxial compound fabric.

本文简介经编网眼织物、双面织物、双轴向和多轴向复合织物土工布的特点和应用。

7.Low cycle multiaxial fatigue failure is the main failure mode of aeroengine compressor disk.

低循环多轴疲劳失效是航空发动机低压压气机轮盘的主要失效形式。

8.The new testing apparatus allows for multiaxial 多轴的 stress analysis in materials.

新的测试设备允许对材料进行多轴的多轴的应力分析。

9.This software can simulate multiaxial 多轴的 stress distributions in complex structures.

该软件可以模拟复杂结构中的多轴的多轴的应力分布。

10.The research focused on multiaxial 多轴的 behavior of the composite materials under different loading scenarios.

研究集中在复合材料在不同加载场景下的多轴的多轴的行为。

11.The engineering team developed a multiaxial 多轴的 fatigue testing machine to evaluate component durability.

工程团队开发了一台多轴的多轴的疲劳测试机,以评估组件耐久性。

12.In biomechanics, multiaxial 多轴的 loading conditions are crucial for accurate simulations.

在生物力学中,多轴的多轴的加载条件对于准确的模拟至关重要。

作文

In the realm of engineering and materials science, the term multiaxial (多轴的) is frequently used to describe conditions or systems that involve multiple axes of stress or strain. Understanding this concept is crucial for designing structures and materials that can withstand various forces acting from different directions. For instance, consider a bridge that must support the weight of vehicles while also withstanding wind loads and seismic activity. Engineers must account for these multiaxial (多轴的) stresses to ensure the safety and durability of the structure.The behavior of materials under multiaxial (多轴的) loading conditions can differ significantly from uniaxial loading, where the stress is applied in only one direction. When materials are subjected to multiaxial (多轴的) stresses, they may exhibit complex interactions between different types of stress, leading to phenomena such as yielding, fracture, or fatigue. For example, metals often show an increase in strength when subjected to multiaxial (多轴的) stresses compared to uniaxial stresses, a phenomenon known as the 'Bauschinger effect.' This effect highlights the importance of considering multiaxial (多轴的) conditions in material selection and structural design.Moreover, the study of multiaxial (多轴的) loading is essential in fields such as biomechanics, where the human body experiences forces from various directions during movement. For instance, when an athlete runs, jumps, or pivots, their joints and muscles endure multiaxial (多轴的) stresses. Understanding how these stresses affect the body can lead to better training programs, injury prevention strategies, and rehabilitation techniques.In recent years, advancements in technology have enabled engineers and scientists to simulate multiaxial (多轴的) loading conditions more accurately. Finite element analysis (FEA) software allows for detailed modeling of how materials and structures respond to complex loading scenarios. Such tools are invaluable for predicting failure points and optimizing designs before physical prototypes are built.In conclusion, the concept of multiaxial (多轴的) stress is integral to various fields, including engineering, materials science, and biomechanics. By understanding how materials behave under multiaxial (多轴的) conditions, professionals can create safer, more efficient designs and improve our understanding of complex systems. As we continue to push the boundaries of technology and innovation, the importance of considering multiaxial (多轴的) stresses will only grow, making it a fundamental aspect of modern science and engineering.

在工程和材料科学领域,术语multiaxial(多轴的)常用于描述涉及多个应力或应变轴的条件或系统。理解这一概念对于设计能够承受来自不同方向各种力量的结构和材料至关重要。例如,考虑一座必须支持车辆重量,同时还要抵御风载荷和地震活动的桥梁。工程师必须考虑这些multiaxial(多轴的)应力,以确保结构的安全性和耐久性。材料在multiaxial(多轴的)加载条件下的行为与单轴加载(仅在一个方向施加应力)可能显著不同。当材料受到multiaxial(多轴的)应力时,它们可能会表现出不同类型应力之间的复杂相互作用,导致屈服、断裂或疲劳等现象。例如,与单轴应力相比,金属在multiaxial(多轴的)应力下通常表现出强度增加,这种现象被称为“鲍辛格效应”。这一效应突显了在材料选择和结构设计中考虑multiaxial(多轴的)条件的重要性。此外,multiaxial(多轴的)加载的研究在生物力学等领域也至关重要,因为人体在运动过程中经历来自各个方向的力量。例如,当运动员跑步、跳跃或转身时,他们的关节和肌肉承受着multiaxial(多轴的)应力。理解这些应力如何影响身体可以导致更好的训练计划、伤害预防策略和康复技术。近年来,技术的进步使工程师和科学家能够更准确地模拟multiaxial(多轴的)加载条件。有限元分析(FEA)软件允许详细建模材料和结构如何响应复杂加载场景。这些工具对于预测失效点和优化设计在物理原型构建之前是无价的。总之,multiaxial(多轴的)应力概念在工程、材料科学和生物力学等多个领域中至关重要。通过理解材料在multiaxial(多轴的)条件下的行为,专业人员可以创造出更安全、更高效的设计,并提高我们对复杂系统的理解。随着我们不断推动技术和创新的边界,考虑multiaxial(多轴的)应力的重要性只会增加,使其成为现代科学和工程的基本方面。