initial ordinate

简明释义

原始纵坐标

英英释义

The initial ordinate refers to the value of the dependent variable (usually represented on the y-axis) at the starting point of a graph or coordinate system.

初始纵坐标指的是在图表或坐标系统的起始点上,因变量(通常表示在y轴上的值)的数值。

例句

1.When plotting the data points, ensure that the initial ordinate 初始纵坐标 is correctly marked on the graph.

在绘制数据点时,确保图表上正确标记了initial ordinate 初始纵坐标

2.In statistics, the initial ordinate 初始纵坐标 can indicate the baseline measurement in a study.

在统计学中,initial ordinate 初始纵坐标 可以表示研究中的基线测量。

3.The initial ordinate 初始纵坐标 is crucial for understanding the behavior of the equation as it approaches the y-axis.

在方程接近y轴时,initial ordinate 初始纵坐标 对理解方程的行为至关重要。

4.To find the slope of the function, we first need to determine the initial ordinate 初始纵坐标 at x equals zero.

要找到函数的斜率,我们首先需要确定在x等于零时的initial ordinate 初始纵坐标

5.In a linear graph, the initial ordinate 初始纵坐标 represents the starting point of the line.

在一条线性图中,initial ordinate 初始纵坐标 表示该线的起始点。

作文

In the realm of mathematics and data analysis, the concept of an 'initial ordinate' plays a crucial role in understanding graphs and functions. The term 'initial ordinate' refers to the y-coordinate of a point on a graph where the x-coordinate is zero. This point is significant because it often represents the starting value of a function or a dataset at the origin of the coordinate system. For instance, in a linear function, the 'initial ordinate' indicates where the line intersects the y-axis, providing essential information about the behavior of the function as it progresses along the x-axis.Understanding the 'initial ordinate' is vital for various applications, including physics, economics, and engineering. In physics, for example, when analyzing motion, the 'initial ordinate' can represent the initial position of an object at time zero. This information is crucial for determining how the object will move over time based on its velocity and acceleration. Similarly, in economics, the 'initial ordinate' might indicate the starting price of a product before any changes due to market dynamics occur. By analyzing the 'initial ordinate', economists can predict future trends and make informed decisions.Moreover, the 'initial ordinate' is not only important in theoretical contexts but also has practical implications in real-world scenarios. For instance, when creating a budget, the 'initial ordinate' could represent the starting balance of an account. Understanding this initial value helps individuals and businesses plan their expenditures and savings effectively. In project management, the 'initial ordinate' may denote the baseline cost or time required to complete a project. By comparing subsequent values to the 'initial ordinate', managers can assess whether a project is on track or if adjustments are necessary.Additionally, visualizing data through graphs enhances the understanding of the 'initial ordinate'. When plotting a graph, the 'initial ordinate' serves as a reference point that allows viewers to gauge the scale and impact of changes in the data. For example, in a sales report graph, the 'initial ordinate' would show the sales figure at the beginning of the period being analyzed. This visual representation aids stakeholders in quickly grasping the performance trends over time, facilitating better decision-making.In conclusion, the concept of 'initial ordinate' is foundational in mathematics and various applied fields. Its significance lies in providing a starting point for analysis, whether in scientific research, economic forecasting, or everyday budgeting. By recognizing the value of the 'initial ordinate', individuals can enhance their understanding of data trends and make informed decisions based on solid analytical foundations. As we continue to navigate an increasingly data-driven world, mastering concepts such as the 'initial ordinate' will undoubtedly empower us to interpret and utilize data more effectively. Thus, the 'initial ordinate' not only enriches our mathematical knowledge but also equips us with essential skills for practical application in diverse fields.

在数学和数据分析的领域中,‘initial ordinate’(初始纵坐标)这一概念在理解图形和函数方面起着至关重要的作用。‘initial ordinate’指的是图形上一个点的y坐标,当x坐标为零时。这一点是重要的,因为它通常代表了函数或数据集在坐标系原点的起始值。例如,在一个线性函数中,‘initial ordinate’表示直线与y轴的交点,为我们提供了有关函数沿x轴变化行为的基本信息。理解‘initial ordinate’对于物理学、经济学和工程等各种应用至关重要。例如,在物理学中,当分析运动时,‘initial ordinate’可以表示一个物体在时间零时的初始位置。这一信息对于确定物体将如何随时间移动,根据其速度和加速度进行分析是至关重要的。同样,在经济学中,‘initial ordinate’可能表示产品在市场动态变化之前的起始价格。通过分析‘initial ordinate’,经济学家可以预测未来趋势并做出明智的决策。此外,‘initial ordinate’不仅在理论背景中重要,而且在现实场景中也具有实际意义。例如,在创建预算时,‘initial ordinate’可能代表账户的起始余额。理解这个初始值有助于个人和企业有效地规划支出和储蓄。在项目管理中,‘initial ordinate’可能表示完成项目所需的基线成本或时间。通过将后续值与‘initial ordinate’进行比较,管理者可以评估项目是否按计划进行,或者是否需要调整。此外,通过图表可视化数据增强了对‘initial ordinate’的理解。当绘制图表时,‘initial ordinate’作为参考点,使观众能够衡量数据变化的规模和影响。例如,在销售报告图表中,‘initial ordinate’将显示被分析期间开始时的销售数字。这种可视化表现帮助利益相关者迅速掌握随时间变化的表现趋势,从而促进更好的决策。总之,‘initial ordinate’的概念在数学和各种应用领域中是基础性的。它的重要性在于为分析提供了一个起点,无论是在科学研究、经济预测还是日常预算中。通过认识到‘initial ordinate’的价值,个人可以增强对数据趋势的理解,并基于坚实的分析基础做出明智的决策。随着我们继续在一个日益以数据驱动的世界中航行,掌握诸如‘initial ordinate’这样的概念无疑将使我们更有效地解释和利用数据。因此,‘initial ordinate’不仅丰富了我们的数学知识,还为我们在各个领域的实际应用提供了必要的技能。

相关单词

initial

initial详解:怎么读、什么意思、用法

ordinate

ordinate详解:怎么读、什么意思、用法