codon
简明释义
n. 密码子(遗传密码的单位)
n. (Codon)人名;(西)科东
英英释义
A codon is a sequence of three nucleotides in DNA or RNA that corresponds to a specific amino acid or stop signal during protein synthesis. | 密码子是DNA或RNA中由三个核苷酸组成的序列,对应于特定的氨基酸或在蛋白质合成过程中的停止信号。 |
单词用法
终止密码子;停止密码 |
同义词
三联体 | The codon sequence determines the amino acid sequence in a protein. | 密码子序列决定了蛋白质中的氨基酸序列。 |
反义词
非密码子 | The non-codon regions of DNA are often referred to as introns. | DNA的非密码子区域通常被称为内含子。 | |
终止密码子 | 终止密码子信号蛋白合成的结束。 |
例句
1.The codon that marks the start of translation.
标明转译起始位置的密码子。
2.Based on the disease-specific codon usage characteristic, a novel approach to predict human disease genes is developed.
基于这种疾病特异的密码子使用特征,设计了一种新的预测疾病基因的方法。
3.Each codon is a specific sequence of three nucleotides (three nucleotide pairs in double-stranded DNA), and each codon codes for a single amino acid unit in a protein.
每个密码子是特异的三核苷酸序列(双链DNA状况下为三个三核苷酸对),每个密码子编码蛋白质的一个氨基酸单位。
4.Species is a minor factor and it will cause further difference in codon usage in a given class.
即功能和类型决定密码子使用模式的大的分类,而物种决定该大类中进一步的差异。
5.We further explored the correlation between synonymous codon bias and gene expression level and gene length.
进一步研究基因表达水平和基因长度与密码子使用偏爱之间的关系。
6.By using the whole genome sequences and EST data from the indica rice cultivar 93 11, a detailed relative analysis is made of the effect of some impact factors on synonymous codon usage.
利用籼稻品种9311的全基因组序列及相应的EST数据,对影响同义密码子用法的若干因子进行了详细分析。
7.Each codon in the mRNA sequence is read by the ribosome during protein synthesis.
在蛋白质合成过程中,核糖体会读取mRNA序列中的每个密码子。
8.A start codon, usually AUG, signals the beginning of protein translation.
起始密码子,通常是AUG,标志着蛋白质翻译的开始。
9.Stop codons signal the termination of protein synthesis, ensuring that the polypeptide chain is complete.
终止密码子标志着蛋白质合成的结束,确保多肽链完整。
10.The genetic code is made up of sequences of three nucleotides, known as a codon, which correspond to specific amino acids.
遗传密码由三个核苷酸的序列组成,称为密码子,它们对应特定的氨基酸。
11.Mutations can occur when a codon is altered, potentially leading to changes in protein function.
当密码子发生改变时,可能会发生突变,从而导致蛋白质功能的变化。
作文
Understanding the concept of a codon is essential for anyone studying molecular biology or genetics. A codon is a sequence of three nucleotides that together form a unit of genetic code in a DNA or RNA molecule. Each codon corresponds to a specific amino acid or a stop signal during protein synthesis. This means that the sequence of codons in an mRNA strand determines the sequence of amino acids in a protein, which ultimately influences the structure and function of that protein. To grasp the importance of codons, one must first understand the central dogma of molecular biology, which describes the flow of genetic information from DNA to RNA to protein. In this process, DNA is transcribed into messenger RNA (mRNA), which is then translated into a polypeptide chain. The translation occurs in the ribosome, where the mRNA is read in sets of three nucleotides—each set being a codon. For example, the codon AUG serves as the start signal for translation and codes for the amino acid methionine. The genetic code is nearly universal, meaning that the same codons generally specify the same amino acids across different organisms. This universality is a testament to the common ancestry of life on Earth. However, there are some exceptions in certain organisms, particularly in mitochondrial and plastid genomes, where variations in the codon assignments can occur. In addition to specifying amino acids, some codons serve as stop signals, indicating the end of protein synthesis. These stop codons (UAA, UAG, and UGA) do not correspond to any amino acid but instead signal the ribosome to release the newly formed polypeptide chain. Understanding how these codons function is crucial for interpreting genetic sequences and predicting the resulting proteins. Mutations in the DNA sequence can lead to changes in the codons and, consequently, the amino acid sequence of proteins. Such mutations can be silent (not affecting the protein), missense (changing one amino acid), or nonsense (creating a premature stop codon). Each type of mutation can have varying effects on the organism, ranging from benign to detrimental. For instance, sickle cell disease is caused by a single nucleotide mutation that alters a codon, leading to the production of abnormal hemoglobin. In conclusion, the study of codons is fundamental to understanding genetics and molecular biology. They play a critical role in the translation of genetic information into functional proteins, which are vital for all biological processes. As research advances, our knowledge of codons and their implications continues to grow, opening new avenues for genetic engineering and biotechnology. By mastering the concept of codons, students and researchers alike can contribute to the exciting field of genetics, paving the way for future discoveries and innovations.
理解codon的概念对于任何学习分子生物学或遗传学的人来说都是至关重要的。codon是由三个核苷酸组成的序列,这些核苷酸共同形成DNA或RNA分子中的遗传密码单位。每个codon对应特定的氨基酸或在蛋白质合成过程中作为终止信号。这意味着mRNA链中的codons的顺序决定了蛋白质中氨基酸的顺序,最终影响该蛋白质的结构和功能。要掌握codons的重要性,首先必须理解分子生物学的中心法则,该法则描述了遗传信息从DNA到RNA再到蛋白质的流动。在这个过程中,DNA被转录成信使RNA(mRNA),然后翻译成多肽链。翻译发生在核糖体中,在这里,mRNA以三核苷酸为单位进行读取——每个单位都是一个codon。例如,codon AUG作为翻译的起始信号,编码氨基酸甲硫氨酸。遗传密码几乎是普遍的,这意味着相同的codons通常在不同生物中指定相同的氨基酸。这种普遍性证明了地球上生命的共同祖先。然而,在某些生物中,特别是在线粒体和质体基因组中,codon的分配可能会有所变化。除了指定氨基酸外,一些codons作为停止信号,指示蛋白质合成的结束。这些停止codons(UAA、UAG和UGA)不对应任何氨基酸,而是信号核糖体释放新形成的多肽链。理解这些codons的功能对于解释基因序列和预测生成的蛋白质至关重要。DNA序列中的突变可能导致codons的变化,从而影响蛋白质的氨基酸序列。这种突变可以是沉默的(不影响蛋白质)、错义的(改变一个氨基酸)或无义的(产生提前的停止codon)。每种类型的突变对生物体的影响各不相同,从良性到有害。例如,镰状细胞病就是由一个核苷酸突变引起的,该突变改变了一个codon,导致产生异常的血红蛋白。总之,研究codons是理解遗传学和分子生物学的基础。它们在将遗传信息转化为功能性蛋白质的过程中发挥着关键作用,而这些蛋白质对所有生物过程至关重要。随着研究的进展,我们对codons及其影响的知识不断增长,为基因工程和生物技术开辟了新的途径。通过掌握codons的概念,学生和研究人员都可以为激动人心的遗传学领域做出贡献,为未来的发现和创新铺平道路。