deorbit
简明释义
vt. 使离开轨道
n. 脱离轨道
英英释义
To bring a spacecraft or satellite down from orbit to a lower altitude, often leading to re-entry into the Earth's atmosphere. | 将航天器或卫星从轨道降低到较低的高度,通常导致重新进入地球大气层。 |
单词用法
脱轨机动 | |
脱轨燃烧 | |
控制脱轨 | |
脱轨轨迹 | |
使航天器脱轨 | |
卫星脱轨 | |
在生命周期结束时脱轨 | |
安全脱轨 |
同义词
再入 | 航天器将很快开始其再入阶段。 | ||
下降 | 卫星的下降是可控的,以防止碎片。 | ||
返回 | 该任务包括安全返回地球。 |
反义词
轨道 | 卫星将进入地球轨道。 | ||
发射 | 他们计划明年发射一艘新航天器。 |
例句
1.Small satellites shouldn't add to the problem of space debris since they are relatively easy to deorbit.
小卫星相比较而言容易脱轨,但也不应该增加空间碎片问题。
2.To keep people on the ground safe, it's best to deorbit a spacecraft with a strong burn of propellant, to slow it down at the right time.
为确保地面上人的安全,最好的方法是以一个强大的推进器燃烧来使宇宙飞船脱轨,在正确的时间使其慢下来。
3.It's evaluated for every area I and every chunk from a given spacecraft. If the sum total exceeds.0001-i.e., a 1 in 10,000 chance of a single casualty-that craft requires a controlled deorbit.
可以用来评估每一个i区和指定航天器上的每一块垃圾,如果该值超过0.0001,即每一万人中可能会有一个人因此而伤亡,那么就应该对该飞行器的坠落路线进行引导。
4.It's evaluated for every area I and every chunk from a given spacecraft. If the sum total exceeds.0001-i.e., a 1 in 10,000 chance of a single casualty-that craft requires a controlled deorbit.
可以用来评估每一个i区和指定航天器上的每一块垃圾,如果该值超过0.0001,即每一万人中可能会有一个人因此而伤亡,那么就应该对该飞行器的坠落路线进行引导。
5.The spacecraft will deorbit 再入轨道 after completing its mission.
这艘航天器将在完成任务后再入轨道。
6.NASA plans to deorbit 再入轨道 the old satellite to prevent space debris.
NASA计划将旧卫星再入轨道以防止太空垃圾。
7.After years in orbit, the space station will deorbit 再入轨道 in the coming months.
在轨道上运行多年后,空间站将在未来几个月内再入轨道。
8.The team developed a new method to deorbit 再入轨道 defunct satellites more efficiently.
团队开发了一种新方法,以更高效地再入轨道失效卫星。
9.To safely dispose of the satellite, engineers must deorbit 再入轨道 it at a controlled rate.
为了安全处置卫星,工程师必须以可控的速度再入轨道。
作文
In the realm of space exploration, the term deorbit refers to the process of bringing a spacecraft or satellite down from its orbit around the Earth. This process is crucial for various reasons, including the safe disposal of defunct satellites and the return of crewed missions back to Earth. The concept of deorbit is not just about descending from space; it involves careful planning and execution to ensure that the object re-enters the Earth's atmosphere in a controlled manner.When a satellite or spacecraft is in orbit, it is essentially in a state of free fall, constantly falling towards the Earth but also moving forward fast enough that it keeps missing it. However, over time, some satellites are no longer needed or have completed their missions. In such cases, engineers must initiate the deorbit sequence. This involves firing thrusters or using other propulsion methods to reduce the object's velocity, allowing it to descend into the atmosphere.One of the most significant challenges during the deorbit process is ensuring that the spacecraft burns up upon re-entry. If managed correctly, most of the spacecraft will disintegrate before reaching the Earth’s surface, minimizing the risk of debris causing harm. However, for larger objects, such as the International Space Station (ISS), controlled deorbit maneuvers are necessary to guide the structure to a designated area, often referred to as the 'spacecraft cemetery' in the South Pacific Ocean. This area is chosen because it is remote and minimizes the risk to populated areas.The importance of deorbit cannot be overstated. With the increasing number of satellites in orbit, the issue of space debris has become more pressing. Each defunct satellite poses a collision risk to operational spacecraft. Therefore, responsible space agencies actively plan for the deorbit of their satellites at the end of their operational lives. For instance, the European Space Agency (ESA) has established guidelines that require satellites to be deorbited within 25 years after their mission ends to mitigate space debris.Moreover, the technology behind deorbit maneuvers is continually evolving. Engineers are researching new methods to enhance the efficiency and safety of the process. Some innovative ideas include using drag sails or other devices that increase atmospheric drag on satellites, thereby facilitating their deorbit without requiring significant fuel consumption. These advancements not only help in managing space debris but also promote sustainable practices in space exploration.In conclusion, the term deorbit encapsulates a vital aspect of space operations. It represents the transition of objects from the vastness of space back to Earth in a controlled and safe manner. As humanity continues to explore and utilize outer space, understanding and implementing effective deorbit strategies will be essential to maintaining the balance between exploration and preservation of our orbital environment. The future of space travel relies on our ability to manage our presence in space responsibly, and deorbit is a key component of that responsibility.
在太空探索领域,术语deorbit指的是将航天器或卫星从其绕地球轨道降落的过程。这个过程对于各种原因至关重要,包括安全处置失效卫星和将载人任务返回地球。deorbit的概念不仅仅是关于从太空下降;它涉及到仔细的规划和执行,以确保物体以受控方式重新进入地球大气层。当卫星或航天器在轨道上时,它基本上处于自由下落状态,不断向地球坠落,但也以足够快的速度向前移动,以至于不断错过地球。然而,随着时间的推移,一些卫星不再需要或已完成其使命。在这种情况下,工程师必须启动deorbit序列。这涉及到点火推进器或使用其他推进方法来降低物体的速度,使其能够下降到大气层中。在deorbit过程中,最重要的挑战之一是确保航天器在重新进入时燃烧殆尽。如果管理得当,大多数航天器将在到达地球表面之前解体,从而最大限度地降低碎片造成伤害的风险。然而,对于较大的物体,如国际空间站(ISS),需要进行受控的deorbit机动,以引导结构到一个指定区域,通常称为南太平洋的“航天器墓地”。这个区域的选择是因为它偏远,能够最大限度地减少对人口稠密地区的风险。deorbit的重要性不容小觑。随着轨道上卫星数量的增加,空间碎片问题变得更加紧迫。每个失效的卫星都对正在运行的航天器构成碰撞风险。因此,负责任的航天机构积极规划其卫星在运营生命结束时的deorbit。例如,欧洲航天局(ESA)建立了指导方针,要求卫星在其任务结束后25年内进行去轨,以减轻空间碎片。此外,关于deorbit机动的技术也在不断发展。工程师们正在研究新方法,以提高这一过程的效率和安全性。一些创新的想法包括使用拖曳帆或其他装置,增加卫星上的大气阻力,从而在不需要大量燃料消耗的情况下促进其deorbit。这些进步不仅有助于管理空间碎片,还促进了太空探索中的可持续实践。总之,术语deorbit概括了太空操作的一个重要方面。它代表着物体从浩瀚的太空安全地过渡回地球的过程。随着人类继续探索和利用外层空间,理解和实施有效的deorbit策略将对维持探索与保护我们轨道环境之间的平衡至关重要。未来的太空旅行依赖于我们负责任地管理我们在太空中的存在,而deorbit是这一责任的关键组成部分。